MBE 法による α "-Fe₁₆N₂薄膜のエピタキシャル成長

Epitaxial growth of α "-Fe₁₆N₂ films by molecular beam epitaxy

O 東小薗創真 1 、伊藤啓太 1,2,3 、安富陽子 1 、具志俊希 1 、都甲薫 1 、末益崇 1

(筑波大 数理物質¹、東北大 エ²、学振³)

^oS. Higashikozono¹, K. Ito^{1,2,3}, Y. Yasutomi¹, T. Gushi¹, K. Toko¹, and T. Suemasu¹

(1. Inst. of Appl. Phys., Univ. of Tsukuba, 2. Dept. of Electronic Eng., Tohoku Univ., 3. JSPS) E-mail: bk201111036@s.bk.tsukuba.ac.jp

【背景】 我々は新たな磁性材料として、窒化物強磁性材料に注目している。特に α "-Fe₁₆N₂は大き な飽和磁化をもつ強磁性材料であると報告されているが、飽和磁化が 1700 ~ 2500 emu/cm³とバラ ついている¹⁻³⁾。本研究では、分子線エピタキシー(MBE)法により高品質な α "-Fe₁₆N₂薄膜を作製し、 飽和磁化の正確な値を明らかにすることを目的とした。 α "-Fe₁₆N₂成長の前段階として、報告例が ある MgO 基板上への α '-Fe₈N のエピタキシャル成長を試みた⁴⁾。

【実験】MBE 法により MgO(001)基板上へ室温で固体 Fe を供給し、450 °C, 10 min のアニールに より α -Fe(13 nm)下地層をエピタキシャル成長した。続いて、室温で固体 Fe と高周波プラズマ N₂ を同時供給し、膜厚約 30 nm の α '-Fe₈N を成長した。N の供給量を固定し、Fe レートのみを変え て Fe/N の供給比が異なる Fe-N 薄膜を作製した。結晶性の評価には ω -2 θ X 線回折(XRD)、 ϕ 2 θ_{χ} XRD、 反射高速電子線回折(RHEED)を用いた。

【結果・考察】Fig. 1(a)に ω -2 θ XRD を、1(b)に ϕ 2 θ_{χ} XRD および RHEED パターンを示す。図中下 段の試料ほど Fe レートが小さく、Fe に対する相対的な N の供給量が多い。Sample B は、 ω -2 θ XRD に α '-Fe₈N(002)、 ϕ 2 θ_{χ} XRD に α '-Fe₈N(110)のピークが現れたことから、 α '-Fe₈N がエピタキシャル 成長している。Sample A は、 α '-Fe₈N(002)のピークが Sample B よりも高角側にシフトしたため、 格子定数が本来の値よりも小さく、 α -Fe 格子への N の侵入量が少ないと推察される。sample C は N の供給量が多く、 γ '-Fe₄N が形成した。いずれの試料も、RHEED 像はストリークとなったが線 幅が広くぼやけており、結晶面は配向しているが格子定数が不均一と推察される。今後は、作製 した α '-Fe₈N をポストアニールし、N が規則配置した α "-Fe₁₆N₂の作製を目指す。

【謝辞】本研究は、JSPS 科研費基盤 A(No. 26249037)の助成を受けた。

T. K. Kim and M. Takahashi., Appl. Phys. Lett. 20, 492 (1972). 2) S. Okamoto *et al.*, J. Appl. Phys. 79, 1678 (1996).
T. Ogawa *et al.*, Appl. Phys. Express 6, 073007 (2013). 4) N. Ji *et al.*, Appl. Phys. Lett. 102, 072411 (2013).

Fig. 1. (a) ω -2 θ XRD, (b) ϕ -2 θ_{γ} XRD and RHEED patterns.