WO₃-NRs/BiVO₄ core-shell nanostructure for enhanced photocatalytic H₂ production

The University of Tokyo¹, National Institute for Materials Science (NIMS)²

[°]Yuriy Pihosh¹, Kazuma Mawatari¹, Masahiro Tosa² and Takehiko Kitamori¹

E-mail: pihosh@icl.t.u-tokyo.ac.jp

Bismuth vanadate (BiVO₄) is one of the most promising photocatalytic materials for water splitting with theoretical solar to hydrogen (STH) efficiency of 9.2%. Despite being a good light absorber with a direct bandgap, BiVO₄ is characterized by a high recombination rate of photogenerated carriers. As a result, the carrier diffusion length (L_d) is much shorter than the thickness required for sufficient light absorption. In our previous work, Pihosh *et al.* Small (2014), we demonstrated that this issue can be effectively resolved by using core-shell WO₃/BiVO₄ heterojunction nanorods fabricated by the Glancing Angle Deposition (GLAD) technique, where the BiVO₄ absorber layer is thinner than the L_d while its optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Such photoanode resembles the well-known concept of an Extremely Thin Absorber (ETA) solar cell. Our results showed that the ETA concept offers a promising strategy toward efficient photocatalytic systems with a highly stable photocurrent of 3.2 mA cm⁻². However, in that case the BiVO₄ layer covers only the top parts of the WO₃-NRs in a form of caps that utilize only ~ 25-30% of the nanorods' surface to form a heterojunction. Apparently, there is a clear possibility to further improve the efficiency of the photoanode by covering the WO₃-NRs along the whole length with a conformal layer of BiVO₄.

At present work we demonstrated that the WO₃-NRs prepared by GLAD provide highly efficient pathways for photogenerated electrons and outlined that further optimization of a WO₃-NRs/BiVO₄ core-shell structure toward better conformality of the BiVO₄ ETA layer should lead to an enhanced

Fig. 1. SEM image of a WO_3 -NRs/BiVO_4 photoanode (a). Evolution of H_2/O_2 gases measured by gas chromatography with faradaic efficiency on the right axis and photocurrent for the same photoanode at $1.23V_{RHE}$ under standard solar simulated light of 1Sun (b). All measurements have been performed at a standard 3 electrodes configuration cell in a potassium phosphate buffer solution (pH 7.0) with WO_3-NRS/BiVO_4 as a working electrode, Pt- counter and Ag/AgCl- reference electrodes, respectively.

photocurrent. We fabricated a WO₃-NRs/BiVO₄ core-shell structure photoanode by a combination of GLAD of WO₃-NRs and subsequent Electrochemical Deposition (ED) of BiVO₄ and Co-Pi (Fig.1a). The fabricated photoanode demonstrated an ultimate water splitting photocurrent of 6.72 mA cm⁻² measured under 1 sun illumination at $1.23V_{RHE}$ that corresponds to ~ 90% of the theoretically possible value for BiVO₄, where H₂ and O₂ gases evolved at the expected stoichiometric ratio with the generation rates of 102 and 51 µmol h⁻¹ cm⁻², respectively, with a saturated faradaic efficiency of 85% (Fig.1b).