Influence of oxygen pressure on electrical and magnetic properties of $CoFe_2O_4$ thin film Hokkaido Univ.

^OMasato Araki, Takashi Yanase, Taro Nagahama, Toshihiro Shimada E-mail: east_araki@ec.hokudai.ac.jp

(Introduction)

 $CoFe_2O_4$ with inverse spinel structure is ferrimagnetic insulator. Because of the exchange splitting of the conduction band, a current in $CoFe_2O_4$ feel two distinct tunnel barrier heights for spin-up and spin –down electrons, leading to spin selective transport of electron. This effect is called spin filter. $CoFe_2O_4$ with high Curie temperature ($T_C=793K$) is remarkable candidate for spintronics device material. [1]

As tunnel barrier materials, good insulating property is necessary. Hence, studying influence of deposition condition to electric properties is significant. In this study, we fabricated CoFe₂O₄ thin films in various O₂ pressure, and investigated electrical and magnetic property.

(Experiments)

Samples were grown on MgO(100) substrate by Molecular Beam Epitaxy method ,and film structures were MgO(100)/CoFe₂O₄(50 nm)/Al₂O₃(3 nm). Al₂O₃ is deposited for preventing oxidation of CoFe₂O₄ in the air. CoFe₂O₄ thin films were formed by reactive deposition at 300°C in O₂ atmosphere. Surface form was observed by AFM, we measured electrical resistivity by Van der Pauw method and magnetization process by magneto-optical kerr effect (MOKE).

⟨Results⟩

 O_2 pressure of 4×10^{-4} , 4×10^{-5} , 3×10^{-5} Pa was maintained during deposition. From AFM measurements, surface roughness Ra was estimated at 0.12~0.19 for all the films. This result indicates that film surface was very smooth. Fig.1 shows electrical resistivity of $CoFe_2O_4$ thin films. From fig.1, we saw that resistivity became lower as O_2 pressure during deposition decreased. Fig.2 shows results of MOKE measurements under out of plane magnetic field. The result of MOKE measurements suggests that these

CoFe₂O₄ thin films have perpendicular magnetic anisotropy.

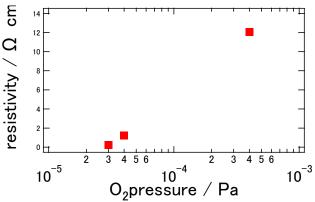


Fig.1 Resistivity of CoFe₂O₄ films as a

Wagnetic field / T

Fig.2 MOKE curves of CoFe₂O₄ films.

function of O₂ pressure during deposition.

[1] Michael G. Chapline et al PHYSICAL REVIEW B 74, 014418(2006)