電気二重層キャパシタンス構造を用いた Co/Pt における 磁気モーメントの電界効果

Electric field effect on magnetic moment in Co/Pt using electric double layer capacitor structure ^o大日方 綯¹, 早川 大智¹, 三輪 一元², 小野 新平², 小山 知弘¹, 千葉 大地¹ (1. 東大物工、2. 電中研)

^OAya Obinata¹, Daichi Hayakawa¹, Kazumoto Miwa², Shimpei Ono², Tomohiro Koyama¹, and Daichi Chiba¹ (1.The Univ. of Tokyo, 2.CRIEPI)

E-mail: aobinata@cblb.t.u-tokyo.ac.jp

Recently, electric field control of magnetism in metallic structure has been intensively studied¹⁻⁴. Electric double layer (EDL) capacitor is known as one of powerful tools to apply very large electric field to sample. Actually, in a Co/Pt EDL capacitor structure, very large electric field effect on the Curie temperature has been observed⁴. In this work, we directly measured gate voltage dependence of the magnetic moment of Co/Pt structure using the EDL capacitor.

MgO/Co(0.29 nm)/Pt(4.1)/Ta layers from the surface side were deposited on intrinsic Si substrate by rf sputtering. The EDL capacitor structure was formed using a polymer film containing an ionic liquid. We defined that the application of positive gate voltage (V_G) was the direction of an increase in the electron density at the Co surface. Figure (a), (b) and (c) show time (t) charts of the applied V_G, perpendicular component of magnetic moment (m_{\perp}) , and the gate current $(I_{\rm G})$ at 300 K, respectively. From this figure, one can see that m_{\perp} increased and decreased reversibly with the application of positive and negative $V_{\rm G}$ when the magnitude of $V_{\rm G}$ was smaller than ~3.0 V. When the negative $V_{\rm G}$ of ~ -3.5 V was applied at $t \sim 260$ min, $|I_{\rm G}|$ increased drastically and at the same time m_{\perp} abruptly became small. After that, m_{\perp} was constant even when $|V_G|$ > 3.5 V was applied, indicating that the irreversible chemical reaction took place. Electric field effect on m_{\perp} at low temperature will be also discussed.

Figure: Time *t* charts of (a) the applied gate voltage $V_{\rm G}$, (b) the gate current $I_{\rm G}$, and (c) perpendicular component of magnetic moment m_{\perp} .

This work is partly supposed by Grant-in-Aid for Scientific Research (S) from JSPS.

- ¹ M. Weisheit *et al.*, *Science* **315**, 349 (2007).
- ² T. Maruyama et al., Nature Nanotechnol. 4, 158 (2009).
- ³ D. Chiba et al., Nature Mater. 10, 853 (2011).
- ⁴ K. Shimamura et al., Appl. Phys. Lett. 100, 122402 (2012).