Observation of spin relaxation in 800-°C-annealed Be-doped In_{0.8}Ga_{0.2}As_{0.45}P_{0.55} at 10-300 K 早大先進理工¹, SINANO-CAS² [°]ショウ サンウ¹, 原澤 遼¹,安江 雄也¹, H. Wu¹, 有竹 貴紀¹, S. L. Lu², L. Ji², 竹内 淳¹ Waseda Univ.¹, SINANO-CAS² [°]C. Jiang¹, R. Harasawa¹, Y. Yasue¹, H. Wu¹, T. Aritake¹, S. L. Lu², L. Ji² and A. Tackeuchi¹ E-mail address: s112804036@akane.waseda.jp

InGaAsP grown on InP substrate is a promising candidate of four junction solar cells which can achieve the ideal efficiency of 55%.¹ Here, we report the spin relaxation time of $800-^{\circ}$ C-annealed Be-doped In_{0.8}Ga_{0.2}As_{0.45}P_{0.55} grown on an InP substrate observed by time-resolved pump and probe measurement at 10-300 K.

The sample contains a 1000-nm-thick Be-doped $In_{0.8}Ga_{0.2}As_{0.45}P_{0.55}$ grown on an InP substrate by molecular beam epitaxy. The Be concentration is 2×10^{17} cm⁻³. After the growth, the sample was annealed at 800 °C. The spin relaxation process was observed by pump and probe measurement at 10-300 K.²

A Ti:sapphire laser with an optical parametric oscillator was used as the optical source. The pump beam was chopped by an electro-optic modulator at 1.9 MHz to avoid optical noise in the low-frequency region. The excitation laser wavelength was tuned to 1117 nm at 10 K, and 1167 nm at 300 K.

The time evolution of spin-dependent reflection intensity for the excitation power of 30 mW at 300 K is shown in Fig.1, where I_+ indicates a right circularly polarized excitation with a right circularly polarized probe, while I_- indicates a right circularly polarized excitation with a left circularly polarized probe. Note that the spin polarization was clearly observed. The time evolution of spin polarization $(I_+ - I_-)/(I_+ + I_-)$ is shown in the inset of Fig.1. The spin relaxation time τ_s , which is twice the relaxation time of the spin polarization, is evaluated to be 114 ps. Figure 2 shows spin relaxation times for different excitation powers at 10-300 K. In Fig.2, the spin relaxation time becomes faster as increasing excitation power at 10-77 K. The temperature dependence evaluated to be $\tau_s \propto T^{-1.9}$ is observed at 77-300 K.

At 10-77 K, spin relaxation time decreases as the carrier intensity increases. This result shows that Bir-Aronov-Pikus process³ is related at 10-77 K. At 77-300 K, the spin relaxation time decreases with increasing temperature. Therefore, this result implies that Elliott-Yafet process⁴ and D'yakonov-Perel' process⁵ are effective at 77-300 K.

Fig.1 Time evolution of spin-dependent reflection intensity and (inset) spin polarization for the excitation power of 30 mW at 300 K.

Fig.2 Spin relaxation times for different excitation powers at 10-300 K. The solid line shows the temperature dependence of the spin relaxation time fitted at 77-300 K for 30 mW-pump.

¹ L. Ji et al., Solar Energy Materials & Solar Cell. **127**, 1, (2014).

² A. Tackeuchi et al., Appl. Phys. Lett. 56, 2213 (1990).

³ G. L. Bir et al., Symmetry and Strain-Induced Effects in Semiconductors, Wiley, **27** (1975).

⁴ R. J. Elliott, Phys. Rev. **96**, 266 (1954); Y.Yafet, Solid State Phys. **14**, 1 (1963).

⁵ M. I. D'yakonov et al., Fiz. Tverd. Tela. **13**, 3581 (1971) [Sov.Phys. Solid State **13**, 3032 (1972)].