Si ナノワイヤー太陽電池の光劣化と Al₂0₃によるパッシベーション効果

Light Degradation and Al₂O₃ Passivation Effect of Si Nanowire Solar Cells 東エ大フロンティア研¹,東工大総理工² °宮澤遼太¹,小路智也¹,角嶋邦之²,片岡好則²,

西山彰 ²,杉井信之 ²,若林整 ²,筒井一生 ²,大橋弘通 ¹,名取研二 ¹,岩井洋 ¹

Tokyo Tech. FRC¹, Tokyo Tech. IGSSE² °R. Miyazawa¹, T. Shoji¹, K. Kakushima², Y. Kataoka²,

A. Nishiyama², N. Sugii², H. Wakabayashi², K. Tsutsui², H. Ohashi¹, K. Natori¹, H. Iwai¹

E-mail: miyazawa.r.ab@m.titech.ac.jp

【研究目的】Si ナノワイヤー太陽電池は高い Surface-to-Volume ratio (S/V 比)を有するため、発電 効率の向上にはキャリア再結合中心となり得る界面準位密度(*D_{it}*)の抑制が求められる。*D_{it}の高 い面方位を持つ Si ナノワイヤー^[1]では終端水素脱離による <i>D_{it}*の増加が顕著化^[2]する懸念が有り, 固定電荷を含むパッシベーション膜による再結合抑制が重要となる。本研究では、光照射によっ て発電特性の劣化した横型 Si ナノワイヤー太陽電池の表面に、負の固定電荷を含む Al₂O₃ 膜を原 子層堆積(ALD)で堆積し発電特性の変化と幅依存性を調べた。

【実験方法】Fig.1 に本研究で作製した横型太陽電池の構造図を示す。SOI 基板上にドライエッチ ングにより横型ナノワイヤーを 100 本並列に作製した。表面保護膜には 1000°C, O₂ 雰囲気中で熱 酸化膜(SiO₂)を形成し、Al₂O₃ はその上に ALD で 5 nm 堆積させた。

【実験結果】Fig.2 に 10000 秒間の 10SUN 光照射前後および Al₂O₃ パッシベーション後における ナノワイヤー太陽電池の発電特性(AM1.5, 100 mW/cm²)を示す。光照射によって減少した *I*_{SC} が パッシベーションによって増加していることがわかる。Fig.3 には初期状態と比較した *I*_{SC} 増加率 のナノワイヤー幅依存性を示す。光劣化はナノワイヤー幅の微細化により顕著化したが、パッシ ベーション後について幅依存性は見られなかった。以上の結果から、ナノワイヤー幅依存性を持 つ光劣化を Al₂O₃ パッシベーションによって非顕在化できることがわかった。

【謝辞】本研究は文部科学省「革新的エネルギー研究開発拠点形成事業(FUTURE-PV Innovation)」の委託により行われたものである。

Fig. 1 Schematic illustration for laterally formed silicon nanowire solar cell structure.

Fig.2 *I-V* characteristics. Short-circuit current decrease as 10 SUN irradiated for 10000s and increase as $ALD-Al_2O_3$ Passivation .

Fig.3 Short-circuit currents increase rate to the initial as a function of nanowire width.

[1] T. Shoji et al., The 74th JSAP Autumn Meeting (2013)

[2] S. Maeda et al., IEEE Int. Reliab. Phys. Symp. 42, 8-12 (2004)