電気化学法よる Cu_20/α - Fe_20_3 ヘテロ接合太陽電池の作製

Fabrication of Electrodeposited Cu₂O/α-Fe₂O₃ Heterojunction Solar Cells ^O張 朝龍、市村 正也(名古屋工業大学)

 $^\circ$ Chaolong Zhang, M. Ichimura (Nagoya Institute of Technology)

E-mail: cke16616@stn.nitech.ac.jp

Copper oxide (Cu₂O) and iron oxide (α -Fe₂O₃) have attracted lots of interest for their semiconducting characteristics, and they have been studied for wide range of applications such as solar cells, photoanodes, etc. Additionally, Cu₂O can be deposited by employing electrodeposition technique which has been a new way for the fabrication of thin film semiconductors, and α -Fe₂O₃ can be easily made by annealing of iron oxide hydroxides (γ -FeOOH). In this study, α -Fe₂O₃ thin film is utilized as a potential n-type material to fabricate p-n heterojunction, and the photovoltaic properties of Cu₂O/ α -Fe₂O₃ heterojunction are evaluated and investigated. Recently successful fabrication of Cu₂O/ α -Fe₂O₃ p-n junction has not yet been tried. Hence, this study has a possibility of offering new candidate materials in solar cell fabrications.

Prior to the fabrication of the Cu₂O/ α -Fe₂O₃ structure, the α -Fe₂O₃ film was made by performing annealing on the γ -FeOOH(as-depo) thin film at 400°C for 1 hour, and the γ -FeOOH thin film was electrodeposited onto the ITO substrate at -0.9 (V vs SCE) from oxygen-bubbled 0.05 M FeSO₄-0.1 M Na₂SO₄ aqueous solution at room temperature and under stirred condition.²⁾ The α -Fe₂O₃ film showed n-type conductivity with a band gap of~ 2.1eV. The Cu₂O layer was then galvanostatically electrodeposited on the as-prepared α -Fe₂O₃ thin film from 0.2 M CuSO₄-1.6 M lactic acid solution at pH = 12.5 (adjusted by KOH) and solution temperature of 40°C.

Figure 1 shows the Raman spectrum of the annealed sample with the measured typical Raman characteristics of commercial α -Fe₂O₃ powder as standard. As shown in figure 2, the Cu₂O/ α -Fe₂O₃ and Cu₂O/ γ -FeOOH(as-depo) heterojunctions both exhibit rectifying properties and photovoltaic characteristics. The best values of the Cu₂O/ α -Fe₂O₃ heterojunction solar cell parameters are V_{OC} = 0.038 V and J_{SC} = 1.12 mA/cm², which are not significantly different from those of the Cu₂O/ γ -FeOOH heterojunction. According to these results, there is no obvious difference between α -Fe₂O₃ and γ -FeOOH when they are applied as an n-type material to fabricate p-n heterojunction solar cells.

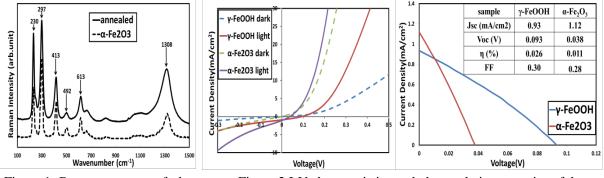


Figure.1 Raman spectra of the annealed sample and commercial α -Fe₂O₃ powder.

Figure.2 I-V characteristics and photovoltaic properties of the Cu_2O/α -Fe₂O₃(400°C) and Cu_2O/γ -FeOOH(as-depo) heterojunctions.

References

J. J. M. Vequizo and M. Ichimura, Appl. Phys. Express 7, 045501 (2014).
J. J. M. Vequizo and M. Ichimura, Appl. Phys. Express 6, 125501 (2013).