配向を制御した α -Fe₂O₃薄膜のインピーダンス測定評価

Characterization of orientation-controlled *a*-Fe₂O₃ films using impedance measurement

⁰ 増子 尚徳¹, 吉松 公平¹, 大島 孝仁¹, 大友 明^{1,2} (1.東工大院理工, 2.元素戦略)

[°]Hisanori Mashiko¹, Kohei Yoshimatsu¹, Takayoshi Oshima¹, Akira Ohtomo^{1,2} (1. Tokyo Tech. , 2.

Material Research Center for Element Strategy)

E-mail: mashiko.h.aa@m.titech.ac.jp

【はじめに】太陽光を利用する光触媒水分解は 水素製造の観点から注目されている. α-Fe₂O₃ は可視光を吸収する安価で安定な材料であり, 水の酸化反応を担う光アノードとして活発に 研究されている. コランダム型構造である α-Fe₂O₃は c 面内で光キャリアの拡散が大きく, 配向を制御したナノ構造電極が提案されてい る [1]. しかしながら,我々は単結晶電極の配 向方位は光電流にほとんど影響しない結果を 得ている [2]. その原因を探るため,インピー ダンス測定を行ったので報告する.

【実験】パルスレーザ堆積法を用いて c 面と m 面 sapphire 基板上に下部電極の Ta(3 at.%):SnO₂ と α-Fe₂O₃ の積層構造を作製した.半導体光電 極特性は Xe ランプ光照射下, 0.1 M NaOH (pH = 13)水溶液中で, Pt を対極, Ag/AgCl を参照 極とし,周波数応答アナライザ付きのポテンシ ョ/ガルバノスタットを用いて評価した.

【結果】c軸とm軸に配向した α -Fe₂O₃電極に 対して, Fig. 1 に示すにインピーダンス測定結 果から等価回路(挿入図)を用いてフィッティ ングすることで各 RC 成分を解析した. Fig. 2 にc軸とm軸に配向した α -Fe₂O₃電極の光電流 特性と各 RC 成分を示す. α -Fe₂O₃ 薄膜中の抵 抗 R_2 に注目するとc軸とm軸配向でほぼ同じ 値を示すことが分かった. また, 5 つの RC 成 分のうち唯一容量 C_3 が配向の違いにより異な る傾向を示した. 容量 C_3 は α -Fe₂O₃電極の表面 準位に由来すると考えられており [3], 水溶液 と接触している結晶面の化学的性質の違いを 反映していることが示唆される.

Fig. 1. Nyquist plots of *c*- and *m*-axis oriented α -Fe₂O₃ photoanodes under Xe lamp light illumination at 0.1 V *vs.* Ag/AgCl. Solid lines indicate the fitted results using the equivalent circuit shown in the inset.

Fig. 2. Cyclic voltammograms in the dark and under Xe lamp light illumination (top) and the equivalent circuit parameters plotted as a function of applied potential (middle and bottom).

- [1] A. Kay et al., J. Am. Chem. Soc. 128, 15714 (2006).
- [2] 增子尚徳 他, 第 75 回秋応物 18a-A10-6 (2014).
- [3] B. Klahr et al., Energy Environ. Sci. 5, 7626 (2012).