Antiferromagnetic anisotropy of buffered Cr₂O₃ thin films

OT. Nozaki*, N. Shimomura, S. P. Pati, and M. Sahashi

(Tohoku University)

*E-mail: nozaki@ecei.tohoku.ac.jp

(ME) effect and perpendicular exchange bias (PEB) erg/cc at 50 K, which is same orders of magnitude in established. For switching the PEB at low voltage, buffer layer exhibit 2~3 times larger K_{AF} compared thin Cr_2O_3 is required. But with decreasing thickness, with those with Pt buffer layer. The change in K_{AF} is blocking temperature (T_B) of PEB in thin Cr_2O_3 due to the lattice distortions of Cr_2O_3 induced by decreases due to the product of AF anisotropy and buffer layers. We confirmed the buffer layer effect thickness (KAF*tAF) become smaller than exchange on KAF. coupling energy $J_K = H_{ex}M_s t_{FM}$. Previously we have reported the enhancement of T_B of Cr₂O₃ film by of JST and ImPACT Program of Council for Science, inducing lattice strain through different buffer layers. Technology and Innovation (Cabinet Office, T_B of 20nm thick Cr_2O_3 film with Fe_2O_3 buffer layer Government of Japan). modulation of KAF. In this study, we evaluate the KAF of Cr2O3 layers with different buffers, based on Meiklejohn-Bean's exchange anisotropy model [1].

Sample design is c-Al₂O₃ sub. /Pt 25 or α -Fe₂O₃ 20/Cr₂O₃ t_{Cr2O3}/Ru t_{Ru}/Co 1/Pt 5 (nm). Samples are fabricated by using a RF/DC magnetron sputtering. Ru spacer layer thickness t_{Ru} was varied from 0 to 1.25 nm. Structural characterization is performed by XRD and TEM. Magnetic properties are measured by SQUID magnetometer after field cool from 340 K to 10 K with magnetic field of +1 T.

We fabricated samples with different t_{Ru} , i.e. samples with different J_K. Using these samples we decided the critical $J_K(J_K^{cr})$ where the H_{ex} disappears. Then we evaluated the K_{AF} of Cr₂O₃ films assuming the relationship $J_{K}^{cr} = K_{AF}t_{AF}$. Figure 1 shows the temperature dependence of KAF of 20nm thick Cr2O3 film with different buffer layers evaluated using

Magnetization reversal using Magneto-electric above mentioned relationship. The K_{AF} are ~ 10⁵ antiferromagnetic (AF) Cr_2O_3 has been with previous report [2]. Cr_2O_3 film with α -Fe₂O₃

This work was funded in part by ALCA Program

References

- [1] D. Mauri, J. Appl. Phys. 62, 2929 (1987).
- [2] J. O. Artman et al., Phys. Rev. 138, A912 (1965).

Fig. 1 Temperature dependence of KAF of 20nm thick Cr_2O_3 film with α -Fe₂O₃ buffer (red circles) and that with Pt buffer (black squires)