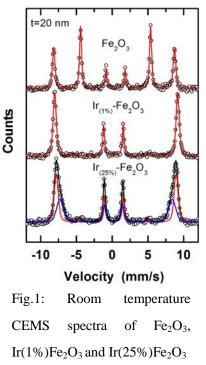
Ir-doping effect on Morin temperature of r-Fe₂O₃ (0001) thin film

OS. P. Pati^{1*}, N. Shimomura¹, Y. Hoshino¹, T. Nozaki¹, K. Mibu², and M. Sahashi¹

(1. Tohoku University, 2. Nagoya Institute of Technology)


*E-mail: sppati@ecei.tohoku.ac.jp

Morin transition temperature (T_M) of Hematite $(\alpha$ -Fe₂O₃) is the temperature at which, the antiferromagnetic spin configuration changes its direction from the [0001] axis to the (0001) basal plane [1]. The value of T_M in both bulk and particle hematite has been reported to be 263K. However, T_M in epitaxial -Fe₂O₃ films has not been sufficiently investigated. Morin transition is explained by the competition

between two different anisotropies: magnetic dipolar anisotropy (K_{MD} , in-plane anisotropy) and single-ion anisotropy (K_{FS} , perpendicular anisotropy) [2]. Use of 4*d* or 5*d* metal doping enhances K_{FS} because of the strong spin–orbit interactions of the 4*d* or 5*d* metal ions, and consequently T_M is increased. In this study, the

successful observation of T_M in (0001) oriented Fe₂O₃ thin films and its enhancement by Ir-doping is reported.

Fe₂O₃ and Ir-doped Fe₂O₃ films are fabricated by reactive sputtering of metal target using RF magnetron sputtering. The concentration of Ir has been varied from 0 to 25% in the metal alloy target. In-plane magnetic measurements are carried out by using SQUID. A clear increase of in-plane magnetization and coercivity for Fe₂O₃ film has been observed indicating Morin transition, while that was not observed for Ir-doping case. These results indicate that by Ir-doping, T_M of Fe₂O₃ is dramatically enhanced. To clarify this assumption, conversion electron Mössbauer spectroscopy (CEMS) study has been employed at room temperature (Fig. 1). The results for the quadrupole shift and the intensity ratio confirm that the spin direction of $-Fe_2O_3$ is in-plane and that T_M is below room

temperature, while the spin direction of Ir–Fe₂O₃ is perpendicular to the film and T_M should be higher than room temperature [3]. With increasing Ir concentration, the line width of CEMS spectra is increased and hence for 25% Ir-doping case, the data is fitted with two subspectra. The additional subspectra having smaller hyperfine field is assigned to the Fe atoms surrounded by Ir ions. These results are powerful evidence confirming the enhancement of T_M to a value higher than 400K in Ir-Fe₂O₃.

This work was funded in part by ALCA Program of JST and ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Japan Government).

[1] F. J. Morin, Phys. Rev. 83, 1005 (1951). [2] J. O. Artman, J. C. Murphy, and S. Foner, Phys. Rev. 138, A912 (1965). [3] F. Vander Woude, Phys. Stat. solidi 17, 417 (1966).