酸化剤を変えた ALD-Al₂O₃ 膜の MOS キャパシタ特性評価

Electrical Measurements of ALD-Al₂O₃ MOS Capacitors with Different Oxidants 東工大フロンティア研 ¹, 東工大総理工 ², [°] 福井僚 ¹, 中村嘉基 ¹, 角嶋邦之 ², 片岡 好則 ², 西山彰 ², 若林整 ², 杉井信之 ², 筒井一生 ², 名取研二 ¹, 岩井洋 ¹

Tokyo Tech. FRC ¹, Tokyo Tech. IGSSE ², °R. Fukui ¹, Y. Nakamura ¹ K. Kakushima ²,

Y. Kataoka², A. Nishiyama², H. Wakabayashi², N. Sugii², K. Tsutsui², K. Natori¹, H. Iwai¹

E-mail: fukui.r.aa@m.titech.ac.jp

【背景】 高誘電体(High-k)薄膜をゲート絶縁膜として用いた Si-MOS キャパシタは閾値が固定電荷(Q_f)だけではなく、High-k/SiO₂ 界面に形成される界面ダイポールによっても変動するという報告があり[1]、 Q_f および界面ダイポールは、プロセスによって大きく依存すると考えられる。本研究では原子層堆積法(ALD)によって Al_2O_3 を成膜する際の酸化剤を H_2O 、 O_2 プラズマおよび O_3 と変え、 Q_f と界面ダイポールを Si MOS キャパシタのフラットバンド電圧(V_{fb})の変化から抽出したので報告する。また、比較のために電子線蒸着(EB)で成膜した Al_2O_3 膜も評価した。

【実験】熱酸化膜が 7.3nm 形成された SiO_2/n -Si(100) 基板を、硫酸過水(SPM)洗浄後に、EB、あるいは 300° の ALD によって Al_2O_3 膜を 5nm から 15nm 程度堆積した。その後 RF スパッタリング法により膜厚 50 nm の W 電極を形成し、パターニングしてゲート電極とした。基板裏面の Al コンタクトを形成後、フォーミングガス $(H_2:N_2=3\%:97\%)$ 雰囲気で 420° C の熱処理を施し、電気特性を評価した。

【結果】Fig 1 に作製した MOS キャパシタの構造を示す。これらの構造の MOS キャパシタの C-V 特性の結果から、等価酸化膜圧(EOT)と Vfb を算出し、プロットした結果を Fig 2 に示す。Fig 2 から Al2O3 を堆積することにより Vfb が正の方向にシフトしていることを確認した。さらに Fig 2 に示した近似曲線の傾きから算出した固定電荷密度と、IL(EOT=7.3nm)との切片から算出したダイポールを Table 1 に示す。これより成膜プロセスの違いによって固定電荷密度もダイポールも変化することが確認でき、Al2O3 を堆積する際には、酸素供給源として H2O を用いた ALD が、最も固定電荷密度が小さく、ダイポールが大きいという結果になった。

【結論】 W//SiO₂/n-Si と W/Al₂O₃/SiO₂/n-Si 構造の MOS キャパシタの比較から Al₂O₃ を堆積することによって V_{th} が正にシフトすることを確認した。さらに成膜プロセスを変えることによって、固定電荷密度もダイポールも異なるという結果になった。

[1] K. Kita, et al., Appl. Phys. Lett., 94, 132902 (2009).

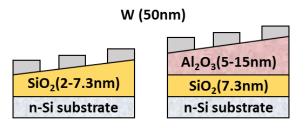


Fig. 1 Schematic illustrations of fabricated MOS capacitors

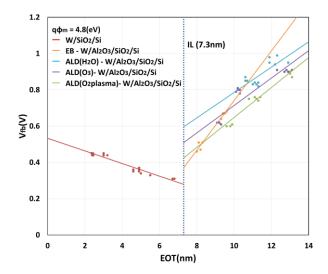


Fig. 2 V_{fb}–EOT plots obtained from the analysis of C-V curves for W/SiO2/n-Si and W/Al2O3/SiO2/n-Si capacitor deposited by EB and ALD with O2 plasma, H2O and O3.

Table 1 Comparison of Qf and dipole at the Al₂O₃/SiO₂ interfaces deposited by EB and ALD with O₂ plasma, H₂O and O₃

	EB	H₂O	O ₃	O ₂ plasma
Q _f (cm ⁻²)	-2.53 × 10 ¹²	-9.78 × 10 ¹¹	-1.1 × 10 ¹²	-1.27 × 10 ¹²
$\Delta_{\text{dipole}}(V)$	0.066	0.29	0.2	0.12