La oxide 界面層を用いた InGaAs ゲートスタックの電気特性の改善

Improvement of Electrical Properties of InGaAs MOS Interfaces by Inserting La Oxide

Interfacial Layers into InGaAs Gate Stacks

東京大学¹,住友化学²,JST-CREST³

^O張志宇^{1,3}, 市川磨^{2,3}, 長田剛規^{2,3}, 山田永^{2,3}, 竹中充^{1,3}, 高木信一^{1,3}

The University of Tokyo¹, Sumitomo Chemical Co. Ltd.², JST-CREST³,

^oC.-Y. Chang^{1, 3}, O. Ichikawa^{2, 3}, T. Osada^{2, 3}, H. Yamada^{2, 3}, M. Takenaka^{1, 3} and S. Takagi^{1, 3}

E-mail: cychang@mosfet.t.u-tokyo.ac.jp

【はじめに】近年、InGaAs 上に La₂O₃を堆積 して形成した MOS 界面は従来の HfO₂/Al₂O₃ ゲートスタックより低い界面準位密度(8×10¹¹ cm⁻²・eV⁻¹)が得られることが示された[1]。しか し、La₂O₃の界面層が InGaAs との MOS 界面に 与える影響はまだ十分明らかとは言えない。そ こで本研究では、原子層堆積法を用いて、 La₂O₃/InGaAs MOS キャパシタを試作し、その 電気特性を調べると共に、薄い La₂O₃界面層と Al₂O₃を積層したゲートスタック構造の電気特 性を調べたので、その結果を報告する。

【実験結果】図 1(a)に 8.2 nm La₂O₃/InGaAs MOS キャパシタの C-V を示す。C-V の弱反転 領域における周波数分散が小さいことから La₂O₃/InGaAs MOS 界面の D_{it} が低いことが窺 われる。図 1(b)の Conductance 法[2]で測定した 界面準位密度分布から、 D_{it} の最小値として 2.6 ×10¹¹ cm⁻²·eV⁻¹の値が得られることが分かる。 しかし、C-V のヒステリシスが大きく、La₂O₃ 膜中に、多くの欠陥準位が存在することが示唆 される。結果として、La₂O₃/InGaAs MOS 構造 は、良好な MOS 界面である一方、遅い準位が 多いという欠点を有すると言える。

そこで、低い MOS 界面準位密度を維持しな がら、遅い準位の影響を低減するため、La₂O₃ を薄膜化し、誘電体膜と組み合わせる積層構造 を検討した。図 2(a)に 3.5 nm Al₂O₃/InGaAs、(b) に 3.5 nm Al₂O₃/La₂O₃/InGaAs 積層構造の C-V 特性を示す。ここで La2O3 界面層の厚さは 0.4 nm (10 cycle)である。薄い La₂O₃界面層の挿入 によって、C-Vの弱反転領域における周波数分 散が小さくなり、D_{it}が減少したことが分かる。 また、La₂O₃の薄膜化によって、Al₂O₃/InGaAs のヒステリシスと同等のレベルまで、ヒステリ シスが小さくなることも分かる。図3に界面準 位密度とLa2O3界面層膜厚の関係を示す。ここ で La₂O₃の ALD において、およそ 7 cycle まで がインキュベーション時間となる。La2O3界面 層の膜厚の増加により、D_{it} が減少するが、単 層の La₂O₃ MOS 界面での D_{it}の値までは、低下 しない。これは Al₂O₃の堆積時に、La₂O₃の界

面層との反応や相互拡散が起こり、InGaAs MOS 界面に影響を与えたためと考えられる。

【結論】Al₂O₃/La₂O₃/InGaAs 積層構造により、 ヒステリシスが小さくかつ *D*_{it} が低いゲートス タック構造を実現できた。La₂O₃界面層の挿入 により、InGaAs の MOS 界面を改善できること が実験的に示された。

【参考文献】[1] D. H. Zadeh, et al., IEDM, 2.4.1 (2013). [2] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, New York, Wiley (1982).

Fig. 1 (a) *C*-*V* of 8.2 nm $La_2O_3/InGaAs$ MOS capacitor and (b) D_{it} distributions of 8.2 nm $La_2O_3/InGaAs$ MOS capacitor.

Fig. 2 C-V of (a) $Al_2O_3/InGaAs$ and (b) $Al_2O_3/La_2O_3/InGaAs$ gate stacks.

Fig. 3 D_{it} of Al₂O₃/La₂O₃/InGaAs at $E - E_i = 0.1$ eV as a function of La₂O₃ cycle numbers.