## 反応性プラズマ支援成膜法により形成した BN 膜の粘弾性と密着性 Viscoelasticity and adhesion property of BN films prepared by Reactive Plasma-Assisted Coating (RePAC) 神港精機<sup>1</sup>, 兵庫県立工業技術センター<sup>2</sup>, 京大院工<sup>3</sup>, 阪大産研<sup>4</sup> <sup>o</sup>野間 正男<sup>1</sup>, 山下 満<sup>2</sup>, 江利口 浩二<sup>3</sup>, 長谷川 繁彦<sup>4</sup> SHINKO SEIKI. Co., LTD.<sup>1</sup>, Hyogo Prefectural Institute of Technology<sup>2</sup>, Kyoto Univ.<sup>3</sup>, Osaka Univ.<sup>4</sup> <sup>o</sup>Masao Noma<sup>1</sup>, Michiru Yamashita<sup>2</sup>, Koji Eriguchi<sup>3</sup>, Shigehiko Hasegawa<sup>4</sup> E-mail: m-noma@shinko-seiki.com

# 1. はじめに

機械特性が優れる窒化ホウ素は、sp<sup>3</sup>結合を持つ立方晶(c-BN)、ウルツ鉱型(w-BN)が知られている<sup>1)</sup>。PVD、PECVD 法による成膜プロセスで 3000HV 以上の硬さを持つ BN 膜は、基板から剥離 しやすいことが知られている<sup>2)</sup>。我々は BN 膜の密着性を向上させるために、RePAC 法を用いた 生成プラズマの安定化と中間層としてアモルファス BN 上への t-BN(turbostratic-BN)導入により、 BN 膜/基板界面の密着性の改善を実現した<sup>3-5)</sup>。BN 膜の密着性を得るために用いる t-BN 層は、c 軸が基板表面に平行な方向に配向した結晶構造を持つ<sup>6)</sup>。今回、ある基板バイアス電圧の範囲で、 弾性を示す膜上に粘性を示す領域がこの t-BN 層の最表面に形成されることがわかった。本講演で は、その粘性領域形成過程の入射イオンエネルギー依存性について報告する。

### 2. t-BN 層の成膜法

RePAC 法を用いた BN 成膜条件は、アノード電流( $I_a$ )=30 A、プロセスガス Ar/N<sub>2</sub>=60/55 sccm で ある。BN 成膜時に基板に入射する N イオン、Ar イオンのエネルギーは、基板電圧( $V_{sub}$ )により制 御した。 $V_{sub}$ の制御範囲は–10~–180 V である。成膜した膜構造は、BN/B/Si 基板である。成膜時 間はすべてのプロセスで統一し、B 層は 30 秒、BN 層は 270 秒である。なお、RePAC において t-BN 膜が形成される基板電圧の範囲は、-35~–90 V であることがわかっている。BN 膜特性については、 硬さと表面特性(XPS による状態分析, AFM 観察)解析を行った。

#### 3. 結果及び考察

図1に、BN 膜を基板電圧条件-75 V、-120 V で形成した場合の XPS 測定結果の B1s ピークを 示す。一般に BN 膜の場合、B1s ピークは、191.0 eV の sp<sup>3</sup>結合ピークと 190.2 eV の sp<sup>2</sup>結合ピー クに分離できる。-120 V の試料では、sp<sup>3</sup>結合の強度よりも sp<sup>2</sup>結合の強度が大きい。一方、-75 V の試料では、sp<sup>3</sup>結合の強度よりも sp<sup>2</sup>結合の強度が小さい。この-75 V で成膜した BN 膜表面を AFM により観察した結果を図 2 に示す。スキャン回数により、トポ像で示す最表面の状態が変化 し、3 回目のスキャン時に得られた島状の形状は、4~6 回目のスキャン時に生じる探針の影響に より消失、または小さくなったと考えられる。この消失した島状の形状は、粘性像で粘性を示す 部分と一致する。6 回スキャン後の弾性像は、全ての観測範囲で弾性体に変化した結果と考えら れる。また、この部分を Ar ガスクラスターイオンビームでエッチングし XPS 解析を行うと、sp<sup>2</sup> 結合の強度が小さくなり、sp<sup>3</sup>結合の強度が大きくなった。この結果より、-60~90 V の範囲で成 膜された BN 膜は、最表面に sp<sup>2</sup>構造を持つ粘性体が存在していると考えられる。

#### 4. おわりに

RePAC で-60~-90 Vの基板電圧により成膜された BN 膜は、最表面に粘性を持つ島状の領域を 有することを確認した。この粘性をもつ島状の領域の BN 膜は、sp<sup>2</sup>結合を持つ h-BN(hexagonal-BN) であった。この粘性体は、AFM 探針の影響によって変形・消失しやすく、また、この粘性体上の 硬質 BN 膜の剥離の要因である可能性が高いと考えられる。

1) C. B. Samantaray and R. N. Singh, Int. Mat. Rev. **50** (2005) 313. 2) I-H. Kim *et al.*, J. Vac. Sci. Technol. **A16** (1998) 2295. 3) M. Noma *et al.*, Jpn. J. Appl. Phys. **53** (2014) 03DB02. 4) 野間ら:2014 年応用物理学会春季大会 18p-E13-15. 5) 野間ら:2014 年応用物理学会秋季大会 17a-C5-3. 6) D. R. McKenzie *et al.*, Surf. Coat. Technol. **78** (1998) 255.

