Design of Perfect Absorber Based on Spiral Architecture Metamaterial for Near-Infrared Spectral Range

Shizuoka Univ.¹, Gomel State Univ.², I. Faniayeu¹,², I. Semchenko², V. Mizeikis¹

E-mail: bz070460@ipc.shizuoka.ac.jp

Recently, perfect absorbers utilizing single-turn metallic helix electromagnetic metamaterial were designed and realized for radio-frequency range[1,2]. Here, we report optimization of this design to tune perfect absorber frequency into near-infrared (NIR) spectral range using numerical simulations that take into account lattice downscaling, and dielectric dispersion of metal. Figure 1(a) shows design of an architecture consisting of left- and right-handed gold helices, and its main structural parameters. Spectra of optical reflectance, transmittance, and absorbance of this structure for normal incidence, obtained using finite-element electromagnetic simulations are shown in Fig. 1(b). Nearly perfect absorbance with peak value of 98% occurs at the resonance wavelength of \(\lambda = 2.25 \) µm, independent of polarization. Thus, ultrathin single-layer absorber can be realized for NIR spectral range. In future such structure can be realized using a dielectric template fabricated in photoresist by direct laser write lithography, and subsequently metallized by gold, silver, or other metal.

![Spiral architecture](image)

Fig. 1 (color) a) The spiral architecture; b) Reflectance, transmittance and absorbance at normal incidence.
