Cu$_3$Au (111) 合金表面の耐酸化保護膜形成

The protective layer formation on Cu$_3$Au(111) surface

○津田泰孝 1、岡耕平 1、牧野隆正 1、Johannes Lehmuskoski 1、Wilson Agerico Diño 1、
笠井秀明 1、吉越章隆 2、寺岡有殿 2 (1. 大阪大学、2. 原子力機構)

○Tsuda Yasutaka 1,a, Kohei Oka 1, Takamasa Makino 1, Johannes Lehmuskoski 1, Michio Okada 1,b, Wilson Agerico Diño 1, Hideaki Kasai 1, Akitaka Yoshigoe 2, Yuden Teraoka (1.Osaka Univ., 2. JAEA.)

E-mail: a. tsuday12@chem.sci.osaka-u.ac.jp, b. okada@chem.sci.osaka-u.ac.jp

http://www.chem.sci.osaka-u.ac.jp/lab/okada/

Initial stage of corrosion is one of the central topics in material science [1]. It is required for the industrial applications to elucidate corrosion processes and to develop corrosion-resistant materials. In the present study, we report results of our detailed studies on the reactivity of oxygen during the initial stages of Cu$_3$Au(111) oxidation with a hyperthermal O$_2$ molecular beam (HOMB) with variable incident energies, using X-ray photoemission spectroscopy (XPS) measurements in conjunction with synchrotron radiation (SR).

All experiments were done using the Surface Reaction Analysis Apparatus (SUREAC 2000) constructed in BL23SU at SPring-8 [2, 3]. The base pressure of the surface reaction chamber was below 2×10$^{-8}$ Pa. The Cu$_3$Au(111) sample was cleaned by repetitive sputtering with 2 keV Ar$^+$ and annealing at 823 K, until no impurities were detected anymore by SR-XPS, and a sharp (1 × 1) LEED pattern was observed for Cu$_3$Au(111). After irradiating a proper amount of HOMB normal to surface, SR-XPS spectra were measured at 0° and 70° from the surface normal. The flux density of the HOMB is about 2×1014, 1.6×1014, 0.7×1014, 6.4×1014 and 2.4×1014 molecules cm$^{-2}$ s$^{-1}$ at kinetic energies of 2.3, 1.1, 0.6, 0.5 and 0.3 eV of HOMB. All experiments were performed at a sample temperature of 300 K.

Figure 1 shows the O-uptake curves produced by integrating a series of O-1s spectra. At low coverage, the 2.3 eV HOMB is less effective than the one with 0.6 eV, because of the excess energy. As the coverage increase, the repulsive interaction of O atoms raises the activation barrier of the dissociative adsorption. Thus, at high coverage the oxidation efficiency for the 2.3 eV HOMB surpasses that for the 0.6 eV HOMB. For the 2.3 eV HOMB at high coverage, the oxidation efficiency is much weaker for Cu$_3$Au(111) than for Cu(111). The Au rich protective layer formed on the Cu$_3$Au(111) causes the difference by preventing the diffusion of O atoms deeper into bulk.

