Hard X-ray photoelectron spectroscopy of epitaxially grown M\textsubscript{x}Ni\textsubscript{1-x}O (M = Li, Mg)

NIMS/SPring-8 1, Tokyo Tech. 2, NAIST 3

1L. S. R. Kumara1, Anli Yang1, Osami Sakata1,2, Ryosuke Yamauchi2, Munetaka Taguchi3, Satoshi Ishimaru1, Akifumi Matsuda2, and Mamoru Yoshimoto2

E-mail: KUMARA.Rosantha@nims.go.jp

Recently, nickel-based cathodes have much interest in advanced technology applications as electrode materials. In rechargeable lithium batteries, nickel is employed in the form of oxide in which lithium ions are intercalated into its crystal structure to form the layered nickel oxide. When Li+ is partially substitute the normal site of Ni2+, a hole is introduced in the form of Ni3+ or O− to keep charge neutrality conditions, and the oxide becomes a black semiconductor \cite{1}.

In addition, Mg\textsubscript{x}Ni\textsubscript{1−x}O epitaxial thin films were grown on sapphire (0001) substrates using PLD to stabilize NiO nanosheets/graphene for lithium storages. On the other hand, the Mg fraction in Mg\textsubscript{x}Ni\textsubscript{1−x}O thin films did not affect the structural properties of the NiO based thin films \cite{2}. Hard x-ray photoelectron spectroscopy (HAXPES) is powerful tool to study the electronic structure of strongly correlated system. The core-level and valence band spectra of M\textsubscript{x}Ni\textsubscript{1−x}O (M = Li, Mg) were obtained at the undulator beamline BL15XU of SPring-8 \cite{3}.

The three distinct features observed in the Ni 2p\textsubscript{3/2} core-level spectra with increasing Li substitution were explained by using an extended configuration interaction (CI) model including the Zhang-Rice doublet bound state \cite{4}. The Ni 2p core-level spectra measured from Mg\textsubscript{x}Ni\textsubscript{1−x}O thin films are identical to that of NiO epitaxial thin films.

As shown in Figure 1, the valence band spectra of Mg\textsubscript{x}Ni\textsubscript{1−x}O thin films consist of four peaks labeled as A, B, C, and D, and the intensity of A and B peaks clearly decreased with increasing of the Mg content.

In this study, the electronic structure of M\textsubscript{x}Ni\textsubscript{1−x}O (M = Li, Mg) thin films were observed by analyzing their core-level and valence band HAXPES spectra, and interpreted using an extended CI model.

\begin{itemize}
 \item[(1)] E. Antolini, Mater. Chem. Phys. 82 (2003) 937
 \item[(2)] Y. H. Kwon et al., Thin Solid Films 529 (2013) 417
 \item[(3)] S. Ueda, J. Electron Spectrosc. Relat. Phenom. 190 (2013) 235
\end{itemize}

Figure 1: HAXPES valence band spectra epitaxially grown Mg\textsubscript{x}Ni\textsubscript{1−x}O.