多結晶 Si 上に成長した BaSi₂薄膜表面の KFM 法によるポテンシャル分布評価 Surface potential distribution of BaSi₂ thin film on multicrystalline Si by Kelvin probe force microscopy

 筑波大学院 数理物質科学研究科¹,名古屋大学²,物質・材料研究機構³, JST-CREST⁴
○李 云鵬¹, 馬場 正和¹, 沼田 涼平¹, 都甲 薫¹,宇佐美 徳隆^{2,4},関口 隆史³ 末益 祟^{1,4} Univ.Tsukuba¹, Univ.Nagoya², NIMS³, JST-CREST⁴

^OY. Li¹, M. BaBa¹, R.Numata¹, K.Toko¹, N.Usami^{2, 4}, T.Sekiguchi³, T.Suemasu^{1, 4}

E-mail:bk201113023@s.bk.tsukuba.ac.jp

【背景・目的】

我々は、新規太陽電池材料として注目している BaSi₂について研究を行っている。BaSi₂は 1.5eV のフ オトンに対して結晶 Si の約 30 倍の光吸収係数(α =3×10⁴cm⁻¹)を持つことや、禁制帯幅が太陽電池の最適 値に近い 1.3eV であることから薄膜化と高効率化が可能であると考えられる[1,2]。過去の研究により、 Si(111)基板上に成長した undoped n-BaSi₂ (n ~ 10¹⁶ cm⁻³)の粒界におけるバンド構造は下に凸であり、少数 キャリアである正孔に対してキャリアトラップとはならないことが分かった[3]。しかし、BaSi₂太陽電池 の実用化を考えた場合、より安価な基板上に BaSi₂が形成できることが好ましい。本研究室では AIC 法 によってガラス上に(111)高配向の多結晶 Si の作製に成功しており[4]、さらにこの多結晶 Si を成長基板 として BaSi₂薄膜の形成に成功している。本研究ではケルビンプローブ原子間力顕微鏡法(KFM 法)を用い て AIC-Si 上に成長した BaSi₂薄膜表面のポテンシャル分布を調べることで、粒界特性を明らかにするこ とを目的とした。

【実験】

超高真空チャンバー内で熱反応堆積法(RDE 法)及び分子線エピタキシー(MBE 法)の 2 段階結晶成長を 行い、AIC-Si 基板上の undoped n-BaSi₂を作製した。結晶性の評価には θ-2θ X 線回折を用い多結晶 BaSi₂ が成長したことを確認した。作製した試料について KFM 測定を行うことで表面ポテンシャルの分布を評 価した。またこの際に、試料表面と試料台をカーボンテープで電気的に接続し、試料表面でのチャージ アップが起きないようにした。

【結果】

Fig. 1(a), (b) にそれぞれ試料表面の同一箇所における 5 µm 四方のトポロジー像とポテンシャル像を示 す。また Fig. 2 (a), (b)にそれぞれ Fig. 1 (a), (b)中の白い破線に沿ったプロファイルを示す。Fig. 2 (a)にお いて下に凸となっている箇所を粒界であると考えると、Fig.2 (b)において赤い破線で示すように下に凸と なっている箇所や、黒い破線で示すように上に凸となっている箇所が観測された。粒界におけるポテン シャル障壁高さの絶対値も 10~75 meV と広い範囲で分布しており、Si(111)基板上の undoped BaSi₂の粒界 とは大きく異なっていることが分かった。これより AIC-Si 基板上の多結晶 BaSi₂の粒界は BaSi₂の様々な 面方位で構成されていることが予想され、粒界ごとに大きく性質が異なることが分かった。今後は、多 結晶 Si 基板上に成長した undoped BaSi₂の粒界などとも比較を行っていく予定である。

Fig. 1 (a) AFM and (b) KFM images observed in the same area. The observed area is $5\times5\mu m^2.$

【参考文献】

K. Morita, *et al.*, Thin Solid Films **508** (2006) 363.
K. Toh, *et al.*, J. Appl. Phys. **50** (2011) 068001.
M. Baba, *et al.*, Appl. Phys. Lett. **103** (2013) 142113.
R. Numata, *et al.*, Thin Solid Films **147** (2014)557.

Fig. 2 Cross sectional profiles along the white dotted lines (a) AA' in Fig. 1(a), and (b) BB' in Fig. 1(b).