針対平板電極における高気圧非平衡 Ne プラズマのシミュレーション

Simulation of non-equilibrium high pressure neon plasma

using by needle - plane electrode

首都大院理工, ⁰元島 一樹, 白井 直機, 内田 諭, 杤久保 文嘉

Tokyo Metro. Univ., [°]Kazuki. Motojima, Naoki Shirai, Satoshi Uchida, Fumiyoshi Tochikubo, E-mail:

motojima-kazuki@ed.tmu.ac.jp

1.はじめに

大気圧近傍で生成される非平衡プラズマは、液体や生体 など多様な媒質に対して照射が可能であり、材料プロセス、 水処理技術や医療応用などの用途で近年注目を集めてい る。従ってその詳細な生成機構の解明は各用途における応 用を深める意味で重要である。高気圧下で非平衡プラズマ を生成する方法として、短ギャップの電極構造でナノ秒パ ルス電圧を印加するアプローチがある。富田らはこの方法 で高気圧下の非平衡 Ne プラズマに対してレーザトムソン 散乱法による電子密度と電子エネルギーの計測を行った [1]。しかしながら、局所的かつ極短時間で生成されるプ ラズマに対して詳細な時間発展を追う事は困難である。こ れを解決するため本研究では流体モデルを用いたシミュ レーションによって解析を行い、高気圧下の Ne プラズマ に対してナノ秒単位での詳細な時間発展を明らかにする。 ナノ秒パルス放電による高気圧 Ne プラズマは、電離が比 較的起こりやすいことから高プラズマ密度になりやすい のではないかと推測される。

2. 解析手法

本モデルでは円筒座標系を採用しており、電極のギャッ プ長は 0.1 cm である。針陽極の境界上にパルス状に時間 変化する電圧を与え、生成されるプラズマの時間発展を追 う。放電ガスの圧力は大気圧としている。解析モデルの概 略図と印加する電圧波形を図1に示す。本解析では、電子、 イオンに対する密度連続式、電子エネルギーの保存式に加 えポアソンの式を解くことで、荷電粒子の密度、電界分布 などの計算をしている。

3. 解析結果

図2に時刻20.6 ns, 32.7 nsにおける電子密度分布の時間 発展を示す。同様に、同時刻における電界強度分布の時間 発展を図3に示す。時刻13 nsに針陽極先端から成長し始 めたストリーマは、時刻20.6 nsにギャップ間の中央に到 達し、26.1 ns では平板陰極にストリーマ先端が達する。 その後、平板に沿って r 軸正方向へ向かって電極間を橋絡 している面が広がっていく。32.7 ns はギャップ間の中央 点における電子密度が最大値を示す時刻である。32.7 ns より後、電子密度はパルス電圧の降下に従って徐々に減少 していく。しかしながらパルス電圧が1Vを下回っても放 電路はその形状を維持しており、放電路の全域に渡って、 電子密度は10¹⁴ オーダを維持している。本解析では100 ns までこの傾向を確認することができた。 本解析により、ストリーマの成長から電極間の橋絡、そ の後の放電路内の電子密度分布の詳細な増減が明らかに なった。

[1] K.Tomita et al., Applied Physics Express 7, 066101 (2014)