Room-temperature local ferromagnetism and its nanoscale domain growth in the ferromagnetic semiconductor Ge\textsubscript{1-x}Fe\textsubscript{x}

Yuki K. Wakabayashi, Shoya Sakamoto, Keisuke Ishigami, Yukio Takahashi, Yukiharu Takeda, Yuji Saitoh, Hiroshi Yamagami, Atsushi Fujimori, Masaaki Tanaka, and Shinobu Ohyama

1Department of Electrical Engineering and Information Systems, The University of Tokyo
2Department of Physics, The University of Tokyo
3Synchrotron Radiation Research Unit, JAERI

Group-IV-based ferromagnetic semiconductor (FMS) Ge\textsubscript{1-x}Fe\textsubscript{x} is expected to become efficient spin injectors and detectors in group-IV-based semiconductor devices, because it can be epitaxially grown on Si and Ge substrates and the conductivity can be controlled by boron (B) doping independently of the Fe concentration x [1]. Furthermore, \(T_c\) can be increased up to 210 K by annealing [2]; however, detailed microscopic understanding of the ferromagnetism is lacking. In this study, we investigate the local magnetic behavior of GeFe by using X-ray magnetic circular dichroism (XMCD) at various magnetic fields and temperatures.

We have carried out XMCD measurements of the Ge\textsubscript{0.935}Fe\textsubscript{0.065} films grown at 160°C \((T_c = 20 \text{ K})\) and 240°C \((T_c = 100 \text{ K})\) by low-temperature molecular beam epitaxy (LT-MBE) [3]. Figure 1 (a) shows the X-ray absorption spectroscopy (XAS) spectrum \([\mu^+ + \mu^-]\) at the Fe \(L_2\) \((~721 \text{ eV})\) and \(L_3\) \((~708 \text{ eV})\) absorption edges in the Ge\textsubscript{0.935}Fe\textsubscript{0.065} film grown at 240°C measured at 5.6 K with a magnetic field \(\mu_0H\) of 5 T applied perpendicular to the film surface. The main peak at around 708 eV is assigned to Fe2+ states in GeFe, which means that almost all the doped-Fe atoms are in the 2\(^\text{+}\) state. Figure 1 (b) shows the XMCD \((= \mu^+ - \mu^-)\) spectra at the Fe \(L_2\) and \(L_3\) absorption edges in the same sample measured at 5.6 K with \(\mu_0H = 0.1, 1, 3, \text{ and } 5 \text{ T}\). Figure 2 shows the effective magnetic-field \(H_{\text{eff}}\) dependence of the XMCD intensity at 707.66 eV for the Ge\textsubscript{0.935}Fe\textsubscript{0.065} film grown at 240°C measured at various temperatures. The total magnetization \(M (= m_{\text{spin}} + m_{\text{orb}})\) obtained by the XMCD sum rules is also plotted by filled red symbols.

Acknowledgement

This work was partly supported by Giant-in-Aids for Scientific Research including Specially Promoted Research and Project for Developing Innovation Systems of MEXT.

References

