CH₃NH₃Sn_xPb_{1-x}I₃ペロブスカイトの Sn 混合比 x による光吸収特性 と電荷分離・再結合特性の変化

Optical absorption, charge separation and recombination dependences of the Sn mixing

ratio x of CH₃NH₃Sn_xPb_{1-x}I₃ perovskite

電通大先進理工¹,九工大院生命体工²,中大理工³,宮崎大工⁴ JST CREST⁵ ⁰沈青^{1,5},尾込裕平^{2,5},豊田太郎^{1,5},藤原幸星²,山崎康平¹,佐藤光希^{1,3},片山建二³, 吉野賢二^{4,5},早瀬修二^{2,5}

Univ. Electro-Commun.,¹ Kyushu Inst. Tech.,² Chuo Univ.,³ Univ. Miyazaki,⁴ JST CREST ⁵

Qing Shen^{1,5}, Yuhei Ogomi^{2,5}, Taro Toyoda^{1,5}, Kosei Fujiwara², Kohei Yamazaki¹, Koki Sato^{1,3},

Kenji Katayama³, Kenji Yoshino^{4,5}, and Shuzi Hayase^{2,5}

E-mail: shen@pc.uec.ac.jp

Organometal trihalide perovskite-based solid-state hybrid solar cells have attracted unexpected increasing interest because of the high efficiency (the record power conversion efficiency has been reported to be over 20%) and low cost for preparation.¹⁾ The high efficiency was thought to mainly originate from the strong optical absorption over a broader range (up to 800 nm for Pb) and longer lifetimes of photoexcited charge carriers (in the order of 10 ns –

100 ns) of the organometal trihalide perovskite absorbers. Recently, Hayase and coworkers have succeeded in harvesting energy in the NIR region by using Sn/Pb cocktail halide based perovskite $(CH_3NH_3Sn_xPb_{1-x}I_3)$ materials covering up to 1060 nm and an efficiency of 4.18 % was achieved at x=0.5². They also found that the photovoltaic properties depended greatly on x. To improve the photovoltaic performance of Sn/Pb halide based perovskite solar cells, optical absorption property and charge separation and recombination mechanism, especially their dependences on x, are key factors and should be understood deeply.

Fig. 1 Changes of the PA spectra of $CH_3NH_3Sn_xPb_{1-x}I_3$ as x increases from 0 to 1.

In this study, we prepared $CH_3NH_3Sn_xPb_{1-x}I_3$ on TiO_2 substrate using one step method,²⁾ where x was changed from 0 to 1. We have investigated the optical absorption properties using photoacoustic spectroscopy (PAS) and charge separation and recombination dynamics using transient absorption (TA) techniques. Firstly, we found that the bandgap E_g of $CH_3NH_3Sn_xPb_{1-x}I_3$ red shifted systemically from 1.52 eV to 1.16 eV as x increased from 0 to 1 as shown in Fig. 1. On the other hand, the Urbach energy E_u increased from 22 meV to 54 meV as Sn was mixed in the Pb perovskite with x=0.3, but decreased to be 34 meV at x=0.5 and then increased again to be 43-45 meV for x>0.5. This result suggests that the crystalline property of the Sn/Pb cocktail perovskite is best at x=0.5. Secondly, we found that the recombination dynamics at the interface of TiO₂ and the perovskite interface depended on x. For the sample with x=0.5, the recombination time was much larger compared to those with other x. Relationship with these properties and the photovoltaic properties and the mechanism will be studied in detail.

References:1) http://www.nrel.gov/ncpv/; 2) Y. Ogomi et.al., J. Phys. Chem. Lett., 2014, 5, 1004.