X 線吸収微細構造測定による Al₀.s2In₀.18N の局所構造解析

Local Structural Analysis around In atoms in Al_{0.82}In_{0.18}N Alloy by using X-ray

Absorption Fine-Structure Measurements

名城大理エ¹, 高輝度光科学研究センター², 工学院大工³

○(M1)清木 良麻¹,小森 大資¹,池山 和希¹,伊奈 稔哲²,尾沼 猛儀³,

宮嶋 孝夫¹,竹内 哲也¹,上山 智¹,岩谷 素顕¹,赤崎 勇¹

Meijo Univ.¹, Japan Synchrotron Radiation Research Inst.², Kogakuin Univ.³

[°]Ryoma Seiki¹, Daisuke Komori¹, Kazuki Ikeyama ¹, Toshiaki Ina², Takeyoshi Onuma³,

Takao Miyajima¹, Tetsuya Takeuchi¹, Satoshi Kamiyama¹, Motoaki Iwaya¹ and Isamu Akasaki¹

E-mail: 163434018@ccalumni.meijo-u.ac.jp

GaN 系面発光レーザ(VCSEL)は自動車のヘッドライトやヘッドマウントディスプレイの光源 として期待され、既に室温連続発振が報告されている[1]。しかしながら、効率的なキャリア注入 と光閉じ込めを同時に可能にする導電性多層膜反射鏡(DBR)の実現が難しく、その実用化を阻 んでいる要因の1つとなっている。最近、竹内らは、n型 Al_{0.82}In_{0.18}N:Si/GaN を導電性多層膜反射 鏡(DBR)として採用した GaN 系 VCSELの室温連続発振に成功した[2]。原理的に Al_{0.82}In_{0.18}N 混 晶半導体は GaN と格子整合するが、この混晶半導体を構成する In-N (*d*_{In-N}=2.15 Å [3])と Al-N (*d*_{AL-N}=1.89 Å [4])のボンド長が14%も異なるため相分離を起こしやすく、実際に大きなボーイン グパラメータが報告されている。前述のデバイス特性の改善を目指した Al_{1-x}In_xN の結晶性向上に は、In 原子近傍の局所構造に関する情報が必要であるが、その報告はない。本研究では、GaN 系 VCSEL に利用した n型 Al_{0.82}In_{0.18}N:Si における In 原子近傍の局所構造をX 線吸収微細構造(XAFS) 測定により求めた。この測定は、大型放射光施設である SPring-8 から得られる 30keV 以上の高エ ネルギーX 線を利用して初めて可能になった。

測定試料として、GaN 基板上に GaN (厚さ 3µm) および Al_{0.82}In_{0.18}N:Si (厚さ 85nm) を MOCVD 法により成長させた。また、比較試料として、サファイア基板上に MBE 法により成長した InN (厚 さ 300nm) を用意した。

XAFS 測定により得られた Al_{0.82}In_{0.18}N と InN における In 原子近傍の動径分布関数を Figure 1 に示す。横軸は In 原子からの距離(r)、縦軸は原子の存在確率に対応している。どちらの動径分布

関数においても、r=1.70Å 近傍に第一近接原子からの明瞭な信号(ピークA及びA)が観測され、その信号強度も一致した。このことは、どちらの試料においても、Inの第一近接原子として4配位したN原子が存在し、In-Nのボンド長は $d_{In-N}=2.15$ Å(位相シフトによりr=1.7Åとは一致しない[3])であることを示している。従ってIn-NとAl-Nのボンド長の差が大きいにも関わらず、測定した n型Al_{0.82}In_{0.18}N中のIn原子は、理想的なIII族原子位置を占有していると考えられる。

[1] Yu. Higuchi et al., Appl. Phys. Express. **1** (2008) 121102.

[2] 池山他, 第 63 回春季応用物理学会, 22p-H121-1, 東工大, 2016.

[3] T. Miyajima et al., phys. stat. sol. (b) 234 (2002) 801.
[4] K. E. Miyano et al., Appl. Phys. Lett. 70 (1997) 2108.

Figure 1 Distance from In atoms (Å) Radial structure functions around In atoms in a Si-doped $Al_{0.82}In_{0.18}N/GaN$ grown on a GaN substrate by MOCVD (black line) and an InN grown on a sapphire substrate by MBE (red