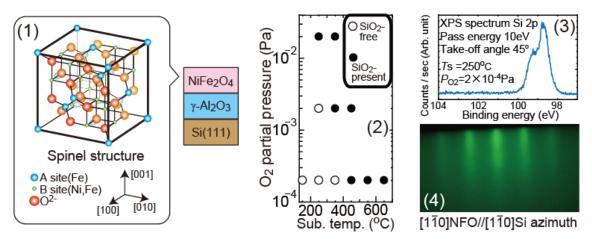
Epitaxial NiFe₂O₄ films grown on Si(111) substrates

ORyosho Nakane^{1,2} and Masaaki Tanaka^{1,3}

Email: nakane@cryst.t.u-tokyo.ac.jp

¹Dept. of Electrical Engineering and Information Systems, The University of Tokyo

²Institute for Innovation in International Engineering Education, The University of Tokyo


³Center for Spintronics Research Network (CSRN), The University of Tokyo

Recently, electrical spin injection/detection via Si have been studied using multi-terminal devices with Fe/MgO junctions and a Si channel, since Fe(001)/MgO(001)/Si(001) structures are expected to have a high spin filter effect that is yet unclear. For actual Si-based spintronic device applications, it is needed to achieve much larger spin injection efficiency than that of the present value (7.5% for Fe/MgO/Si[1]) by advancing physical understanding concerning spin injection/detection. For this purpose, the spin filter effect of ferrite with inverse spinel crystal structure, such as CoFe₂O₄(CFO) and NiFe₂O₄(NFO), is promising [2,3]. In this study, growth, structure, and magnetic properties of epitaxial NFO films on Si(111) substrates are investigated to establish the growth conditions primarily for structures without SiO_x that would be unwanted for spin injection/detection. The reason why NFO was selected is that X-ray photoelectron spectroscopy (XPS) cannot reveal the formation of SiO_x in CFO/Si structures since the binding energy of 3s Co overlaps that of 2p Si originating from SiO_x.

To exclude the formation of a SiO_x interlayer and to solve the large lattice mismatch between NFO and Si, a γ -Al₂O₃ buffer layer was formed by the similar procedure in ref. [4] (Fig. 1): The epitaxial growth of γ -Al₂O₃ was performed by thermal reaction of a 0.5-nm-thick Al layer and a HCl-oxidized Si substrate, which was confirmed by reflective high-energy electron diffraction (RHEED) patterns after annealing at 820°C for 30 min. Then, a 1-2 ML Al₂O₃ layer was epitaxially grown at substrate temperature Ts = 780°C using the pulsed laser deposition (PLD) method with a single-crystalline Al₂O₃ target under the O₂ pressure of of 1×10⁻⁵ Pa. This 1.0-nm-thick buffer layer had a flat surface (RMS ~0.15nm), and did not have both SiO₂ and residual Al from XPS. Then, 3-nm-thick NFO films were grown by PLD at Ts (=150–650°C) under the O₂ partial pressure P_{O2} (= 2×10⁻⁴–2×10⁻² Pa) and Ar pressure 10 Pa.

When a sintered NFO target was used, XPS revealed the SiO₂ formation for any growth condition. Here, we describe the results of samples formed with a metal NiFe₂ target. In Fig. 2, the SiO₂-free and SiO₂-present growth conditions are represented by open and closed circles, respectively (Typical XPS spectrum of 2p Si is shown in Fig. 3.). In the SiO₂-free growth conditions, the RHEED patterns of NFO were streaky with a (1×2) reconstruction pattern (Fig. 4) and six-fold rotational symmetry. From X-ray reflective diffraction (XRD) patterns, the epitaxial relationship of one domain was [11-2]NFO(111) //[11-2]Si(111), whereas that of another domain rotated by 30° in the (111)NFO plane, as previously reported[5]. The surfaces of these samples had condition-independent RMS values of ~0.33nm. Using a SQUID magnetometer, we measured the hysteresis loop at 300 K of the SiO₂-free samples, and found that the saturation magnetizations and coercivities were 145-200 emu/cc and ~90 Oe, respectively, indicating that the epitaxial NFO films are applicable to spin-filter junctions.

Acknowledgement: This work was partially supported by Grant-in-Aid for Scientific Research(B) and Spintronics Research Network of Japan (Spin-RNJ). **References**[1] T. Sasaki et al., APL 104, 052404(2014). [2] J.S Moodera et al., J. Phys. Condens. Matter 19, 165202(2007). [3] J-B. Moussy et al., J. Phys. D: Appl. Phys. 46 143001(2013). [4] Y-C. Jung et al., JJAP. 38, 2333(1999). [5] R. Bachelet et al., Cryst. Eng. Comm. 16, 10741(2014).

Figures (1)Layer structure of the sample and inverse spinel crystalline structure of NFO. (2) SiO₂-free growth conditions(Open marks). (3) Typical XPS spectrum of 2p Si. (4) RHEED pattern of NFO.