Fabrication of Epitaxial Fe₃O₄ Film on Si(111) Substrate

Hokkaido Univ., ^ONozomi Takahashi, Yuta Yamamoto, Takashi Yanase, Taro Nagahama, Toshihiro Shimada

E-mail: nozomi86takahashi@eis.hokudai.ac.jp

[Introduction] Spinel ferrites are promising materials for spintronics applications because they have useful magnetic properties and high Curie temperature. In particular, Fe₃O₄ has been expected to be the spin source in the devices such as magnetic tunnel junctions^[1]. However, direct fabrication of Fe₃O₄ on Si substrates is difficult because the surface of Si is oxidized by introducing oxygen into the chamber. In this study, to prevent the oxidization of the Si surface, we inserted the γ - Al₂O₃ with spinel structure as a buffer layer and fabricated the epitaxial Fe₃O₄ films.

[Experiment] The γ -Al₂O₃ and Fe₃O₄ were grown by the molecular beam epitaxy. The sample structure was Si(111) / γ -Al₂O₃ 2.4nm /Fe₃O₄ 50nm /amorphous-Al₂O₃ 2.0 nm. The γ -Al₂O₃ film was formed at 900°C^[2], then the Fe₃O₄ film was formed by reactive deposition at 300°C in O₂ atmosphere. The partial pressure of O₂ gas was 4.0×10⁻⁴ Pa. The epitaxial growth and the surface structure were observed by RHEED, AFM, XRD and TEM. The magnetic properties were measured by VSM.

[Results] The γ - Al₂O₃ film played a role of preventing the oxidization of Si surface. The RHEED pattern of γ - Al₂O₃ was clear streak pattern. Similarly, that of Fe₃O₄ was clear streak pattern and the Root Mean Square (RMS) was estimated 0.36 nm by AFM measurement. It means that both γ -Al₂O₃ and Fe₃O₄ were considered to be high-quality and flat epitaxial films. As shown in Figure 1, the Fe₃O₄ film was (111)-oriented without other orientations or phases. As shown in Figure 2, the cross-section TEM image of heterostructure taken along the Si[1–10] zone axis showed that the Fe atoms were aligned orderly and the intervals between atoms were corresponded to the spinel structure lattice parameter.

Fig. 2. The interface of Si(111)/ γ Al₂O₃/Fe₃O₄

Reference

[1] T. Nagahama et al., Appl. Phys. Lett. 105, 102410 (2014).

[2] C. Merckling et al., Thin Solid Films 515, 6479–6483 (2007).