Compositional dependence of BaTiO₃-xBaSnO₃ piezoelectric thin films prepared by combinatorial sputtering

神戸大¹·山東大² 〇成 宏ト^{1,2}, 寺元 卓也¹, 肥田 博隆¹, 神野 伊策¹, 欧阳 俊²

Kobe Univ¹. Shandong Univ²., [°]Hongbo Cheng, Takuya Teramoto, Hirotaka Hida,

Isaku kanno, Jun Ouyang

E-mail: hongbocheng@people.kobe-u.ac.jp

1. Introduction

Investigation of lead-free piezoelectric thin films has been of great importance to realize environmental-friendly piezoelectric MEMS. One of the promising lead-free piezoelectric materials is $(1-x)BaTiO_3-xBaSnO_3$ (BT-xBS) solid solution whose piezoelectric coefficient (d_{33}) is as high as 425 pC/N ^[1]. In this study, we tried to deposit BT-xBS thin films on Si substrates and examine the compositional dependence of piezoelectric properties.

2. Experimental procedure and results

BT-xBS perovskite thin films with one-directional graded composition were prepared on Pt/Ti/Si substrates by multi-target rf-magnetron sputtering as shown in Fig. 1. The combinatorial sputtering method enabled a wide range of Sn⁴⁺ concentration varying from 0 to 20 at% in polycrystalline BT-xBS thin films. The crystal structure of BT-xBS thin films were highly (101)-oriented and the maximum value of dielectric constant was 925 at around Sn⁴⁺ = 2.8 at%. The piezoelectric properties of these films were measured by the tip displacement of the BT-xBS/Si unimorph cantilevers. Fig. 2 shows the compositional dependence of the transverse piezoelectric coefficient $|e_{31,f}|$, which reached 1.91 C/m² at the same Sn⁴⁺ concentration of 2.8 at% as dielectric constant. These good piezoelectric performances indicate that BT-xBS solid solution is a promising substitute for lead-free piezoelectric thin films.

Fig.1 combinatorial sputtering setup for compositional gradient BZT-BCT thin films

Fig.2 Piezoelectric coefficients $|e_{31,f}|$ of BZT-BCT films as a function of composition ratio

^[1] Kalyani, A. K.; Brajesh, K.; Senyshyn, A.; Ranjan, R., Appl. Phys. Lett. 2014, 104 (25), 252906.