Single Pixel Imaging with a High-Frame-Rate LED Array

Sho Onose¹, Masashi Takahashi¹, Yasuhiro Mizutani^{2,3}, Takeshi Yasui^{2,4}, Hirotsugu Yamamoto^{1,2}

¹Utsunomiya Univ., ²JST, ERATO MINOSHIMA Intelligent Optical Synthesizer

³Osaka Univ., ⁴Tokushima Univ.

Abstract

E-mail: s_onose@yamamotolab.science

This paper describes a ghost imaging by use of an array of LED lights. Single pixel imaging is a method to obtain image by use of modulated illuminations and a point detector. We show possibility of single pixel imaging with spatio-temporally modulated LED array.

1. Introduction

Single pixel imaging, which is sometimes called ghost imaging, is a technique to obtain image by use of a single-pixel detector [1-3]. With single pixel imaging, the shape of a sample is reconstructed by measuring the light intensity with a bucket detector that collect all light transmitted through or scattered on the sample and correlating the illumination pattern and the measured light intensity. Our final goal is to realize single-pixel imaging for human detection without camera in corporate with a high-frame-rate LED array. Because LED lights, including LED lightings, can be modulated at an extremely high frame rate so that modulated patterns are unnoticeable for viewers. This paper proposes spatio-temporal codes and report simulated results on single-pixel imaging with the developed codes.

2. Principle

Fig. 1 and Fig. 2 show the principle of single pixel imaging. Light from a random pattern illuminates a sample. Then, the part of light that was not blocked by the sample is collected with a lens and detected with a bucket detector. The acquired data is substituted into the following formula to derive the correlation function.

 $G(x, y, n) = \langle I_1(x, y, n)I_2(n) \rangle - \langle I_1(x, y, n) \rangle \langle I_2(n) \rangle$ Then, the image output by applying a correction the value of the correlation function to minimum value equals 0 and maximum equals 1

Fig. 1 Conceptual diagram of an ideal optical system for a single pixel imaging scheme.

3. Result

Fig. 3 shows simulated results. A sample that was used is shown in the left. The parameter "a" means cumulated number. The results show the shape of the sample becomes clear as "a" is increased.

Sample	Result				
	a=100	a=500	a=1000	a=5000	a=10000

Fig. 3 Reconstructed results by use of simple random patterns

4. Conclusion

We have developed spatio-temporal codes for a high-frame-rate LED array so that random patterns are unnoticeable for viewers and the developed codes are applied single pixel imaging.

References

[1] T. B. Pittman, Y. H. Shon, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A, 52 (1995), R3429.

[2]F. Feri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L.A. Ligiato, "High-Resolution Ghost Imaging and Ghost DiffractionExperiments with Thermal Light," Phys. Rev. Lett., 94 (2005), 183602.

[3]A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation," Phys. Rev. Lett., 93 (2004), 093602.