Large Faraday effect of amorphous iron silicate thin films by metallic iron

Kyoto Univ.¹, Univ. of Jena ², ©(DC)Yuko Nakatsuka¹, Kilian Pollok², Falko Langenhorst², Lothar Wondraczek², Koji Fujita¹, Shunsuke Murai¹, Katsuhisa Tanaka¹

E-mail: nakatsuka.yuko.37v@st.kyoto-u.ac.jp

Amorphous oxides containing transition metal have attracted much attention because some of them are transparent to the visible light and exhibit Faraday effect. The Faraday effect plays an important role in telecommunication or laser technology, where it is a key component of many optical devices such as optical isolators, modulators, and switches. Glasses containing rare-earth element have been studied for optical isolators. However, conventional glassy materials have smaller Verdet constant compared to crystalline materials, meaning that it is necessary to prepare large devices so as to achieve sufficient rotation angle. This prevents integrated systems of small size. To overcome this limitation of glassy materials, composites of nanoparticles with glassy matrix have been proposed.

For the present study, we have prepared amorphous thin films with nominal compositions of xFeO·(100–x)SiO₂ (x = 10, 33, 50, 67 in mol%) on silica glass substrates by using a pulsed laser deposition method. The thickness of the resultant films was estimated to be 260, 360, 280, and 240 nm for x = 10, 33, 50 and 67, respectively. The amorphous FeO-SiO₂ thin films show large Faraday effect especially in the short wavelength range of visible light. The rotation angle for 67FeO·33SiO₂ is 4110 rad/m at 633 nm under 15 kOe, which is larger by one order of magnitude than that of Eu²⁺-containing glasses; the Verdet constant of 58.0EuO·12.0Al₂O₃·20.0B₂O₃·10.0SiO₂ is ~300 rad/(Tm) at 633 nm. The rotation angle is extraordinary large for glassy materials, and cannot be explained only by the magnetic moment of Fe²⁺ ions. X-ray photoelectron and X-ray absorption near edge structure spectroscopies point to the predominance of Fe²⁺, but the Fe⁰ state was also detected. Tiny metallic iron crystals were directly observed by transmission electron microscope. Selected area electron diffraction reveals that a ring with few single sharp spots is present at 2.0 Å consistent with the (110) lattice spacing of metallic iron together with broad rings typical for glass. Dark field images using small portions of the 2 Å ring exhibit numerous iron nanoparticles of 2 to 3 nm diameter throughout the iron-rich glass.

Thus, it is shown that the large Faraday effect of amorphous FeO-SiO₂ thin film is due to the presence of metallic iron clusters.

![Figure 1 Wavelength dependence of Faraday rotation angle of FeO-SiO₂ thin films under the magnetic field of 15 kOe.](image)