Chemical solution processed MoS₂ on high-k oxide film

(D)Joonam Kim¹, Kenichi Haga¹, Koichi Higashimine² and Eisuke Tokumitsu¹ ¹School of material science, Japan Advanced Institute of Science and Technology (JAIST) ²Nano material technology center, Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

E-mail: joonam_k@jaist.ac.jp

Two dimensional dichalcogenide is a family of semiconductors, which exhibits both n-type and p-type conductivity with relatively high carrier mobility. In particular, the material group has an energy band gap, which leads to large on/off ratio when it is applied to thin film transistors (TFTs). Recently, exfoliated MoS₂ atomic thin layers have been fabricated into transistors which demonstrate excellent on/off current ratios and high carrier mobility. On the other hand, for large area formation of MoS₂ at low cost, the solution based process is promising. In this work, we report chemical solution process for MoS₂ on high-k dielectric films.

The SiO₂ is usually used as substrate for other deposition techniques such as chemical vapor deposition because it has low roughness, thermal stability. However, the deposited film should be transferred to other film because of low dielectric constant of SiO₂. During the transferring process, there are definitely the damages such as disassemble, film break of the MoS_2 film and undesirable strain. To obtain better performance for TFTs, it is preferable to deposit MoS_2 on the high-*k* thin film, directly.

Source solution used in this work is ammonium tetrathiomolybdate $((NH_4)_2MoS_4)$ dissolved in N-Methyl-2-pyrrolidone (NMP). Figure 1 shows the Raman spectrum of chemical-solution-processed MoS₂ directly deposited on Nb doped ZrO₂ (NZO) film. Annealing at 450 °C in H₂/Ar (5:95) atmosphere (first step) no peak is found, whereas after 990 °C annealing with sulfur vapor (second step) clear peaks at 385 cm⁻¹(E_{2g}) and 410 cm⁻¹(A_{1g}) are observed. We also confirmed the formation of MoS₂ layers by transmission electron microscope (TEM). The details will be presented at the conference, including coating properties on various oxide substrates, which correlates surface energies of the substrates.

Figure 1. Raman spectra of MoS_2 on NZO with variation annealing temperature.