Photoluminescence Quantum Yield and Effective Exciton Radiative Lifetime in Monolayer Transition Metal Dichalcogenides

Nur Baizura Mohamed, Feijiu Wang, Sandhaya Koirala, Hong En Lim, Shinichiro Mouri, Yuhei Miyauchi and Kazunari Matsuda

Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan

E-mail: nur.mohamed.26v@st.kyoto-u.ac.jp

The discovery of graphene and its fascinating properties [1] motivates new research fields in two-dimensional (2D) atomically thin-layered materials. The semiconductor transition metal dichalcogenides (TMDs) with chemical formula of MX₂, (M = Mo, W; X = S, Se, Te) have attracted great research interest due to its intriguing properties [2,3]. It is very crucial to know the photoluminescence (PL) quantum yield and exciton radiative lifetime of this material in both viewpoint of research and opto-electronic device applications [4].

In this study, monolayer tungsten diselenides (1L-WSe₂) from mechanically exfoliation technique was experimentally evaluated its PL quantum yield, Φ_{PL} and effective radiative lifetime, τ_{rad} at room temperature. Figure 1(a) show that PL spectrum of 1L-WSe₂ at power density of 1 kW/cm² is mainly dominates by exciton, while the inset figure shows the integrated PL with varying power density in the linear region. In addition, PL quantum yield of 0.2 % was estimated using relative quantum yield method using highly fluorescent standard dye [5] as reference. We also conducted time-resolved PL spectroscopy measurement to measure the PL decay time of 1L-WSe₂ at room temperature. The exciton effective radiative lifetime of 280 ns was determined using the PL quantum yield and PL decay time, τ_{PL} of ~ 560 ps (Figure 1(b)). This experimental result with considerably long exciton effective radiative lifetime compared to 5 ns of theoretical predicted value at room temperature [6], is suggested due to existence of the dark states. Our finding will provide some information for future development of TMDs application.

- [1] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007)
- [2] K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010)
- [3] S. Mouri et al., Nano Lett. 13, 5944 (2013)
- [4] H. Wang et al., Phys. Rev. B 93, 045407 (2016)
- [5] A. Wakamiya et al., Angew. Chem. Int. Ed. 46, 4273 (2007)
- [6] M. Palummo et al., Nano Lett. 15, 2794 (2015)

Figure 1: (a) PL spectra at 1kW/cm² (inset: Integrated PL vs. P density in 1L-WSe₂); (b) PL decay profile at 532 nm wavelength excitation.