Ordinary and extraordinary refractive indices change of an in-plane-switching blue phase liquid crystal cell

Jin-Jei Wu*, Hsuan-Hao Tsai, Hui-Yu Chen, Tien-Jung Chen, King-Lien Lee and Ja-Hon Lin Department of Electro-optical Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C. E-mail: jjwu45@yahoo.com.tw

Abstract

We measured the variations of ordinary refractive index (δn_o) and extraordinary refractive index (δn_e) of an in-plane-switching (IPS) blue phase liquid crystal (BPLC) cell by varying the driving voltage. Theoretically, the value of $\delta n_e / \delta n_o$ should be 2.[1-2]

Experiment and Discussion

The cell parameters are listed in Table I. The polarization-microscope photograph and the transition temperatures are shown in Fig. 1. The measurement setup shown in Fig. 2 is composed of an dual-frequency laser, polarizing beam splitter, and retroreflectors.

Table.1	IPS Room	Temperature	BPLC	Cell	Data
---------	-----------------	-------------	------	------	------

cell gap	7.3 μm		
electrodes' wide	8 μm		
electrodes' spacing	12 μm		
host nematic LC	LCM10 ($\Delta \epsilon \sim 3$) 78wt%		
	NYCL 22 wt% (left-		
chiral dopant	Handness chiral molecules)		

Fig.2 Dual-frequency laser measument setup.

When the driving electric field is perpendicular (parallel) to the light polarization direction, δn_o (δn_e) can be measured. The experimental result is shown in Fig. 3. It can be found that the value of $\delta n_e / \delta n_o$ is about 1.58 and is different from the theoretical value 2. This result may cause by the non-uniform fringe field.

Acknowledgement

The research is based on work supported by MOST 104-2221-E-027-089 and MOST 104-2221-E-027-091, Taiwan.

References

- [1] J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals," *Appl. Phys. Lett.*, no. 96, 2010
- [2] Zhibing Ge, Linghui Rao, Sebastian Gauza, and Shin-Tson Wu, "Modeling of Blue Phase Liquid Crystal Displays," IEEE, Journal of Display Technology, Vol. 5, Issue 7, July 2009, pp.250-256.

LCM10 (Δε~3) 77.93wt% + NYCL 22.07 wt%

Fig.1 Phases transition of the IPS BPLC cell

Fig. 3 Relationship between (a) δn_o (b) δn_e and voltage.