Current-induced effects on switching magnetic field in La_{0.67}Sr_{0.33}MnO₃/SrTiO₃

RIES, Hokkaido Univ.¹, School of Engineering, Hokkaido Univ.² ^OMichihiko Yamanouchi^{1*}, Tatsuro Oyamada², Takayoshi Katase¹, Hiromichi Ohta¹ *E-mail: m-yama@es.hokudai.ac.jp

Current-induced effective magnetic fields are attractive for electrical manipulation of magnetization direction in spintronics devices. The effective field generated by spin-orbit torques (SOTs) has been studied in ferromagnetic semiconductor [1] and ferromagnetic metal heterostructures [2, 3]. Ferromagnetic oxide is promising material for spintronics application because large magnetoresistance has been reported in magnetic tunnel junction based on ferromagnetic oxide [4], however the effective field has not been reported in it yet. Here, we investigate current-induced effective field in ferromagnetic oxide heterostructure $La_{0.67}Sr_{0.33}MnO_3/SrTiO_3$.

The 4–6 nm thick La_{0.67}Sr_{0.33}MnO₃ (LSMO) films are grown by pulsed laser deposition on a (TiO_2) -terminated SrTiO₃ (001) substrate. The LSMO films show biaxial magnetic anisotropy of the easy axes along <110> as reported in Ref. 5. The films are processed into devices with Hall bar electrode geometry of 10-µm wide channel along [100] by using conventional photolithography and wet etching as shown in Fig. After aligning magnetization direction with external magnetic field along [110] at nominal temperature of 50 K, transverse resistance, reflecting planar Hall effect, is measured with various currents while sweeping external magnetic field in [010]. An abrupt reduction of transverse resistance, which corresponds to switching of magnetization direction from [110] to [110], is observed at a switching magnetic field as reported in La_{0.84}Sr_{0.16}MnO₃ [6]. The switching field becomes larger for negative current than that for positive current with increasing magnitude of current, where positive current is directed along [100]. These results suggest that effective magnetic field along [010] ([010]) is induced by positive (negative) current.

This work was supported by JSPS KAKENHI for Young Scientists A (15H05517) and Grant-in-Aid for Scientific Research on Innovative Areas (25106007) from the Japan Society for the Promotion of Science.

References

- [1] A. Chernyshow et al., Nature Phys. 5, 656 (2009).
- [2] I. M. Miron et al., Nature Mater. 10, 419 (2011).
- [3] L. Liu et al., Science 336, 555 (2012).
- [4] M. Bowen et al., Appl. Phys. Lett. 82, 233 (2003).
- [5] K. Steenbeck and R. Hiergeist, Appl. Phys. Lett. 75, 1778 (1999).
- [6] Y. Bason et al., Appl. Phys. Lett. 84, 2593 (2004).

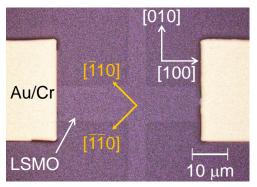


Figure: A micrograph of the device.