Magnetoresistance in the Junction with Multiferroic BiFeO$_3$

Tohoku Univ. 1, CNRS/Thales 2, (D)Tomohiro Ichinose1, Hiroshi Naganuma1,2, Mikihiko Oogane1, Yasuo Ando1

E-mail: ichinose@mlab.apph.tohoku.ac.jp

1. Introduction
Multiferroics with magnetic and electric order have attracted much attention because of strong magnetoelectric coupling in these materials. Particularly, BiFeO$_3$ (BFO) is the promising material because of high magnetic and electric transition temperature. Since some reports indicate interfacial ferromagnetism at BiFeO$_3$/ferromagnet interfaces[1], enhancement of magnetoelectric coupling is expected on these junctions. In this work, it was found that the resistance of the La$_{0.6}$Sr$_{0.4}$MnO$_3$ (LSMO)/BFO-junction monotonically decreased under magnetic field in low temperature, which behavior was similar to colossal magnetoresistance (CMR) in perovskite manganites such as LSMO.

2. Experimental Method
SrTiO$_3$ sub./La$_{0.6}$Sr$_{0.4}$MnO$_3$(70)/BiFeO$_3$(20)/Ru(2)/Au(10) (thickness in nm) junction was prepared by r.f. magnetron sputtering. Conventional photolithography and Ar ion milling techniques were used for processing. Electric conductive properties (R-T, R-H, and I-V curves) were measured using PPMS and pico-ammeter (Keithley 6487).

3. Experimental Results
Fig. 1 shows the R-T curves for the LSMO/BFO-junction and the LSMO single-layer. Resistance of LSMO decreased with temperature after magnetic transition at ~320K. On the other hand, resistance of the LSMO/BFO-junction increased with decreasing temperature. Fig. 2 shows the R-H curves for the junction at 50K. Junction resistance decreased with increasing magnetic field. The R-H property was similar to CMR. However, LSMO was completely ferromagnetic metal in this temperature region in case of the LSMO single-layer. Therefore, this magnetoresistance in low temperature should be observed in the junction system rather than the LSMO single-layer. The interaction between BFO and LSMO might exist in the junction. MR ratio of ~-50% was obtained under ±90 kOe at 50 K.

Acknowledgement This work was supported by Grant-in-Aid for Scientific Research (B) No. 15H03548, (S) No. 24226001, and Grant-in-Aid for JSPS Fellows No. JP16J01892.

Fig. 1 R-T curves for the LSMO/BFO-junction and LSMO

Fig. 2 R-H curves at 50 K for the LSMO/BFO-junction.