強磁性共鳴下で強磁性単層薄膜に発生する起電力に関する研究

Electromotive forces generated in various ferromagnetic metal films under the respective ferromagnetic resonance

大阪市大院工¹, 大阪市大院理², 〇金川 知誠¹, 手木 芳男², 仕幸 英治¹

Osaka City Univ. Eng.¹, Osaka City Univ. Sci.², OKazunari Kanagawa¹, Yoshio Teki², Eiji Shikoh¹

E-mail: kanagawa@mc.elec.eng.osaka-cu.ac.jp

近年、強磁性金属 Ni₈₀Fe₂₀の単層薄膜に対し、その強磁性共鳴(FMR)下において、薄膜自身に起電力が生成されることが発見された[1]。その起電力の起源として、薄膜中の磁気ダンピングの不均一性によってスピン流が生成され、それが逆スピンホール効果(ISHE)によって起電力として検出されるという機構が提唱された[1]。そこで本研究では、様々な強磁性単層薄膜に対し、それぞれの FMR 下で生成される起電力特性を評価し、その起源を解明することを目的とした。

Fig. 1 に試料構造と評価方法の概要図を示す。試料サイズは 1.5×4.0 mm²、膜厚は 25 nm である。強磁性体(FM) として Fe, Co, Ni₈₀Fe₂₀ の三種類を用い、Si/SiO₂ 基板上に DC スパッタリングによって成膜した。また、起電力の検出のために、リード線を試料の両端に銀ペーストを用いて直接取り付けた。FMR の励起には電子スピン共鳴装置を用い、起電力はナノボルトメータを用いて測定した。評価はすべて室温で行った。

Fig. 2 に各強磁性単層薄膜のFMRスペクトル及び起電力特性を示す(マイクロ波パワーP_{mW} = 200 mW)。各強磁性体の飽和磁化は、FMR 特性からFe,Co,およびNi₈₀Fe₂₀それぞれ、1061 emu/cc,1094 emu/cc,および472.8 emu/ccと見積もった。また、起電力特性の解析により、起電力の共鳴磁場に

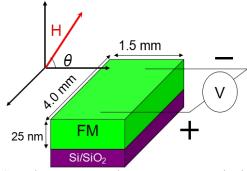


Fig. 1. Sample structure and measurement method.

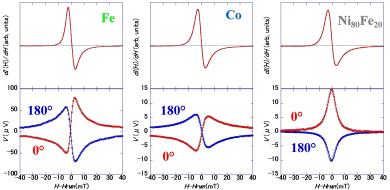


Fig. 2. FMR spectra and output voltages at $\theta = 0^{\circ}$ and 180° .

対する対称成分 V_{sym} 及び反対称成分 V_{asym} は、Fe, Co, そして Ni_{80} Fe $_{20}$ それぞれにおいて、43.0 μ V 及び-73.2 μ V, -1.19 μ V 及び-5.94 μ V, そして、14.7 μ V 及び 0.836 μ V と算出した。したがって $|V_{\text{sym}}/V_{\text{asym}}|$ は Fe, Co, および Ni_{80} Fe $_{20}$ それぞれ、0.588, 0.200, および 17.5 となり、Fe 及び Co 薄膜 において生成される起電力は反対称成分(異常ホール効果等)が主であり、 Ni_{80} Fe $_{20}$ 薄膜については 対称成分(ISHE 等)が主であった。この傾向は強磁性金属中の 3d 電子と 4s 電子の合計数に基づく スピンホール伝導度の理論的研究[2]と定性的に一致する。学会時には研究の詳細を議論する。

[1] A. Tsukahara, et al., Phys, Rev. B **89**, 235317 (2014)., [2] T. Naito, et al., Phys, Rev. B **81**, 195111 (2010).