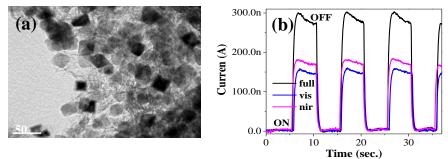
Enhancement of Broadband Solar Light Absorption and Photocurrent Increase of C₃N₄ Nanoparticles Combined with TiN and Carbon Nanoparticles Satish L. Shinde^{*1}, S. Ishii¹, and T. Nagao¹


¹International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials

Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

E-mail: SHINDE.Satishlaxman@nims.go.jp

The use of solar energy to produce hydrogen fuel from overall water splitting is a promising means of renewable energy storage. In the past years, various inorganic and organic materials have been developed as photocatalysts for water splitting driven by visible solar light.¹ Plasmonic metal nanostructures has been proposed to offer a route to improve the solar energy conversion efficiency of inorganic/semiconductors materials system.^{1,2} C_3N_4 is an Earth-abundant and low-cost semiconducting photocatalyst material capable of generating H_2 and H_2O_2 from water.³ The band gap energy of 2.7 eV and high valence band and conduction band positions [1.8 and -0.9 eV versus reversible hydrogen electrode (RHE)] makes it promising material for visible light photocatalysis. During water splitting, C_3N_4 require sacrificial reagent and also suffers from poisoning by the produced H_2O_2 , which is difficult to remove from the C_3N_4 surface.⁴ Various attempt have been made to improve the catalytic activity of C_3N_4 .^{3,4}

Here, we show the strategy to increase the solar light absorption by making a composite of C_3N_4 nanoparticles and plasmonic TiN nanoparticles to improve the photo-electrochemical water splitting performance under simulated solar radiation. Utilization of the broadband plasmonic resonance of the TiN particles and the incorporation of carbon dots (C-Dots) into the C_3N_4 matrix (Fig. 1a) leads to an increase in the UV-vis to NIR absorption over the entire solar spectrum range. The simple chemical synthesis route is used to grow TiN nanoparticles on C_3N_4 -carbon dots composite. The hot electron injection from plasmonic nanostructure to composite and C_3N_4 plays role in photocatalysis (Fig. 1b), whereas C-dots acts as chemical catalyst for the decomposition of H_2O_2 into O_2 . C-dots plays major role in avoiding the sacrificial reagent and catalytic poisoning. This two-step approach overcomes the low optical absorption, spectral utilization and charge recombination losses, and gives effective way to improve the photocatalytic activity. By incorporating TiN the catalytic performance of C_3N_4 -C-dots is increased by 6-fold.

Figure 1. TEM image of TiN decorated C_3N_4 sheets and photocurrent response under simulated visible light.

References:

- 1. Liu, J. et. al. Science 2015, 347, 970.
- 2. Chen, J. et. al. Chem. Commun. 2010, 46, 7492.
- 3. J. Liu, Y. Zhang, L. Lu, G. Wu, W. Chen, Chem. Commun. 2012, 48, 8826.
- 4. X. Wang et al., Nat. Mater. 2009, 8, 76.