水溶性ポリマー犠牲層を用いたスーパーDLC 自立膜の厚膜化 Thickening of Self-Standing Super DLC Film Using a Water-Soluble Polymer Sacrificial Layer ^o山野 将史¹, 針谷 達¹, 今井 貴大¹, 須田 善行¹, 滝川 浩史¹, 神谷 雅男², 瀧 真³, 長谷川 祐史³, 辻 信広³, 西内 満美子⁴, 榊 泰直⁴, 近藤 公伯⁴ (1. 豊橋技科大, 2. 伊藤光学, 3. オンワード技研, 4. 原子力機構) ^oMasafumi Yamano¹, Toru Harigai¹, Takahiro Imai¹, Yoshiyuki Suda¹, Hirofumi Takikawa¹, Masao Kamiya², Makoto Taki³, Yushi Hasegawa³, Nobuhiro Tsuji³, Mamiko Nishiuchi⁴, Hironao Sakaki⁴, Kiminori Kondo⁴ (1. Toyohashi Univ. Technol.,

2. Itoh Opt. Ind. Co., Ltd., 3. Onward Ceram. Coat. Co., Ltd., 4. JAEA) E-mail: yamano.masafumi@pes.ee.tut.ac.jp

1. はじめに

レーザー駆動型イオン加速法 1)の応用の一つ である重粒子線がん治療に用いるイオン源ター ゲットとして,ダイヤモンドライクカーボン (DLC) 膜²⁾が注目されている。自立膜を得る方 法の一つとして, NaCl や糖類等の犠牲層上に目 的膜を成膜する方法がある。これまでの研究では 絹を構成するタンパク質であるシルクフィブロ インを犠牲層として用いて,自立膜の作製を行っ ていた³⁾。しかし,シルクフィブロインは DLC 膜との密着性が悪く,厚膜化が困難な事や,ガラ スを基板として用いる必要があり, 基板バイアス がかかりにくいという問題がある。自立 DLC 膜 の厚膜化には、より硬く、DLC 膜が剥離しない 犠牲層が必要となる。本研究では,水溶性ポリマ ー材料で、多糖類の一種であるデキストランを用 い, DLC 膜の自立化を行い,表面の観察と分析 を行った。

2. 実験方法

デキストラン (東京化成)を精製水に 5 wt%の 濃度で溶解した溶液を Si 基板上にスピンコータ ー (ミカサ株式会社, MIKASA SPINNER, IH-D3) で成膜し,犠牲層を形成した。次にデキストラン 犠牲層上に DLC 膜を成膜した。DLC 膜の成膜に は T 字状フィルタードアーク蒸着 (T-FAD)装置 ²⁾を用いた。成膜条件は、ベース圧力 8×10⁴ Pa 以下,プロセス圧力 3×10⁻³ Pa,基板バイアス Pulse -100 V および Pulse -500 V,成膜時間 10 min とし、炭素源は黒鉛とした。作製した試料を精製 水に浸漬させ、DLC 膜を離膜し、SUS 製パンチ ングメタルにすくい取り、大気雰囲気中で乾燥さ せた。作製した自立膜は光学顕微鏡や顕微レーザ ーラマン分光器などを用いて分析した。

3. 結果と考察

デキストラン犠牲層上に成膜した基板バイア ス Pulse -100 V の DLC 膜は,表面にメッシュパ ターンが観察された。基板バイアス Pulse -500 V の DLC 膜は犠牲層上に平滑に成膜された。Fig. 1 に Pulse -500 V で成膜した自立後の DLC 膜を示 す。挿入図はパンチングメタル1穴を光学顕微鏡 で観察したものである。成膜した DLC の膜厚は 約 110 nm であった。自立後の DLC 膜からはピン ホール等の欠陥は観察されなかった。Fig. 2 にシ ルクフィブロイン犠牲層を用いて作製した厚さ 15 nm の DLC 自立膜 (#1)と、デキストラン犠 牲層を用いて作製した DLC 自立膜(#2)のパン チングメタル上のラマンスペクトルを示す。#1 の *I*_D/*I*_G比は 0.38, #2 は 0.34 であった。ほぼ同様 の膜質を有する DLC 膜において、デキストラン 犠牲層を用いることで、より厚い自立膜を作製す ることができた。

Fig. 1. Photograph of Self-standing super DLC film with 100 nm thickness.

謝辞 本研究は,科学研究費補助金,東海産業技術振興財団, 大澤科学技術振興財団,電子回路基板技術振興財団および内 藤科学技術振興財団助成金の支援を受けて行われた。

- 1) M. Nishiuchi: J. Plasma Fusion Res., 88 (2012) 5.
- 2) H. Takikawa, et al: Surf. Coat. Technol., 163 (2003) 368.
- Y. Miyamoto, *et al*: Jpn. J. Appl. Phys., 55 (2016) 07LE05-1.