CH$_3$NH$_3$PbI$_3$ Perovskite Solar Cells Employing Cu-Phthalocyanine Doped Poly-3-hexylthiophene Hole-Transporting Layer

Vincent Obiozo Eze, Yoshiyuki Seike and Tatsuo Mori*

Department of Electrical and Electronics Engineering, Aichi Institute of Technology, Aichi, 470-0392 Japan.
E-mail: t2mori@aitech.ac.jp*

Introduction
Organic-inorganic perovskite solar cells (PSCs) have recently emerged at the forefront of photovoltaics research. Over the past six years, the power conversion efficiencies (PCEs) have rapidly increased from 3.8% in 2009 to approximately 20% in 2015. Herein, we report the use of hydrophobic poly (3-hexylthiophene) (P3HT) Hole transport layer (HTL) to prevent moisture ingress into the perovskite layer. Cu-phthalocyanine (CuPc) chlorobenzene suspension is introduced as a dopant for enhancing charge extraction. CuPc is thermally and chemically very stable material, and by mixing with a P3HT solution, the aggregation of CuPc nanoparticles was suppressed. Interestingly, the incorporation of the CuPc into P3HT solution led to the significant enhancement of the PSCs’ efficiency from 7.90% to 10.10%.

Results and Discussion
Mesoscopic PSCs were fabricated with the structure fluorine-doped tin oxide (FTO)/compact-TiO$_2$/MAPbI$_3$/P3HT:CuPc/Au in ambient air. Figure 1 presents the solar cell configuration and scanning electron microscope (SEM) cross-sectional image of the device. The light and dark current density–voltage (J–V) curves of the best performance devices measured under simulated 1.5G solar irradiation at 100 mW/cm2 is shown in Fig. 2. The short-circuit current density (I_{sc}) of 20.00 mA/cm2, an open-circuit voltage (V_{oc}) of 0.840 V, a fill factor (FF) of 0.470 and PCE of 7.90% were obtained from the pristine P3HT device. While the optimized device with P3HT: CuPc as HTL shows a I_{sc} of 21.40, V_{oc} of 0.870, and FF of 0.541 leading to a PCE of 10.10%.

Fig. 1. Device architecture and SEM cross-section image of PSCs.

Fig. 2 (a) J–V curves of P3HT and P3HT:CuPc PSCs. (b) dark J–V of P3HT and P3HT:CuPc PSCs.

The improved photovoltaic performance obtained by the P3HT:CuPc device could be attributed to the suppressed leakage current and charge recombination due to an efficient hole transporting and electron blocking as shown in Fig. 2 (b)

Acknowledgements
This research is supported by the AIT Special Grant “Development of Hybrid-Power Science and Technology for Green-Energy”, JSPS Grant-in-Aid for Scientific Research (C) 15K060410001, AIT Special Grant for Educational and Research and Hibi Science Foundation.

References
(2) Vincent Obiozo Eze et al., 2016 Jpn. J. Appl. Phys. 55 02BF08