液相 PLA 法を用いた CaIn2O4 の微粒子、薄膜化及び評価

Characterization of CaIn₂O₄ particles and thin films prepared by liquid phase pulsed laser ablation.

電通大院 先進理工学専攻、

今野 育、中谷 一道、小野 洋、田中 勝己

Graduate school of Informatics and Engineering, Univ. of Electro-Communications.

H.Konno, K.Nakatani, H.Ono, K.Tanaka

E-mail:konno@tanaka.ee.uec.ac.jp

1. 研究背景と目的

現在光触媒として最も利用されているのが TiO_2 ^[1]であるが、紫外光下でしか活性を持たないという欠点があるため、可視光下での活性を持つ光触媒の開発が求められている。その新たな光触媒として期待されているものの一つが $CaIn_2O_4$ ^[2]である。本研究では、 $CaIn_2O_4$ の焼結体を作製し、液相 PLA 法を用いて微粒子、薄膜化を行った。今回は薄膜化された試料の XRD、XPS の結果について報告する。

2. 実験方法

 $CaCO_3$ 、 In_2O_3 を 1:1 の割合で混合させ、大気中 1300 \mathbb{C} で 24 h 焼成し $CaIn_2O_4$ の焼結体を作製した。この焼結体は XRD、XPS を用いて評価した。この焼結体をターゲットとして液相 PLA 法を用いて微粒子を作製し、得られた溶液を大気中で蒸発させ、薄膜の作製を行った。この際、レーザー波長 266nm、355nm を用いて、フルエンスの強度を 0.5、1.0、1.5、2.0 J/cm^2 で行い、それぞれの薄膜を XRD、XPS で評価した。

3. 結果

以下の図1に各々のフルエンスによる XRD の結果を示す。 $CaIn_2O_4$ のメインピークである(040)、(320)、(121)面の強度が大きくことなっている

ことが確認できる。フルエンス 1.0 J/cm^2 の薄膜は、同様の測定条件で CaIn_2O_4 のメインピークが確認できたのに対し、フルエンス 2.0 J/cm^2 においては $(3\ 2\ 0)$ 、 $(1\ 2\ 1)$ のピークは確認できなかった。次に XPS を用いて薄膜中の定量分析を行ったところ、各々のフルエンスによって、Ca:In の析出量が大きく異なることが確認した。 $266\ \text{nm}$ で作製した薄膜の中では、フルエンス $1.5\ \text{J/cm}^2$ がもっとも焼結体と Ca:In 比率が近い値となった。

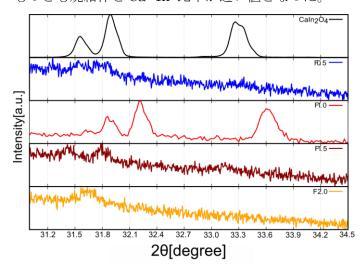


図1:焼結体と 266nm 薄膜試料の XRD

参考文献

[1] Fujishima, A. and Honda, K., *Nature* 238,37(1972).
[2] J.Sato, N.Saito, H.Nishiyama, and Y.Inoue., *J. phys. Chem.* B 2003,107,7965-7969

03-090