Fabrication of a spin injection device having a top-gate structure

Wataru Nomura, Takumi Miyakawa, Masafumi Yamamoto, and Tetsuya Uemura

Graduate School of Information Science and Technology, Hokkaido University
Kita-14, Nishi-9, Kita-ku, Sapporo 060-0814, Japan
Phone: +81-11-706-6440, E-mail:nomura@ist.hokudai.ac.jp

1. Introduction

Electrical injection of spin-polarized electrons into a semiconductor channel and their control by a gate voltage are major prerequisites for creating viable semiconductor spintronic devices such as spin transistors, which feature nonvolatility, reconfigurable logic functions, and ultralow power consumption. While there have been many reports on spin injection into GaAs, Si, or Ge, only a handful of experiments on the gate control of spin signals have been reported [1-3]. Moreover, the gate operation was done only in back-gate structures. However, the back-gate structure suffers from a low operation speed and a large power consumption due to a large parasitic capacitance. Thus, a top-gate structure is indispensable for practical applications. In this study we fabricated a spin injection device having a top-gate structure, and demonstrated a gate control of spin-valve signals in InGaAs channel.

2. Experimental Method

Layer structure consisting of (from the substrate side) a 250-nm-thick undoped GaAs buffer layer, a 700-nm-thick n–In0.04Ga0.96As channel layer, a 15-nm-thick n−In0.04Ga0.96As → n+GaAs transition layer, and a 15-nm-thick n+GaAs layer was grown by molecular beam epitaxy (MBE) on semi-insulating GaAs(001) substrates. The doping concentration of the n−In0.04Ga0.96As channel layer was 3 × 10^{16} cm^{−3} and that of the n+GaAs layer was 5 × 10^{18} cm^{−3} to form a narrow Schottky barrier.

The sample was then processed into a lateral spin transport device by using electron beam lithography and Ar ion milling techniques. The top-gate electrode of Al was deposited on the n−In0.04Ga0.96As channel between the injector and detector contacts (Fig. 1). Spin-dependent transport properties for lateral spin transport devices were evaluated in a four-terminal cross-nonlocal geometry where the nonlocal voltage (V_{NL}) between contacts 3 and 1 was measured under a constant current (I_{bias}) supplied between contacts 2 and 4 at 4.2 K (Fig. 1). The negative V_{G} was applied to the top-gate with respect to terminal 2, which was grounded.

3. Results and Discussion

Figure 2 shows spin-valve signals at 4.2 K for a cross-nonlocal geometry at V_{G} ranging from 0 to −1.4 V. The injection current was set to 40 μA. We observed clear spin-valve signals for the entire V_{G} range investigated, indicating the injection of spin-polarized electrons into an n−In0.04Ga0.96As channel. The amplitudes of the spin-valve signals decreased as |V_{G}| increased. This contrasted with our previous results obtained in a device with a back-gate structure, in which the amplitudes of the spin-valve signals increased as |V_{G}| increased for V_{G} < 0 [3]. In summary, we experimentally demonstrated the gate control of spin signals through a top-gate structure, although the origin of the V_{G} dependence of the spin signals in the present study has not been fully understood.

Reference

Acknowledgments
This work was partly supported by Grants-in-Aid for Scientific Research (KAKENHI Grants No. 25286039 and 15K13960) from the Japan Society for the Promotion of Science (JSPS).