電子ビーム蒸着 MgB₂ 薄膜の超伝導特性に対する Ti ドープおよびアニールの効果

Effects of Ti-doping and annealing on superconducting properties of electron-beam-deposition MgB₂ thin films

京大院工ネ科1, 日立2, 電中研3

 \circ 高畑 仁志 1 ,下田 佑太郎 1 ,堀井 滋 1 ,土井 俊哉 1 ,楠 敏明 2 ,一瀬 中 3

Kyoto Univ.¹, Hitachi Ltd.², CRIEPI³

°H. Takahata¹, Y. Shimoda¹, S. Horii¹, T. Doi¹, T. Kusunoki², A. Ichinose³ E-mail: takahata.hitoshi.25n@st.kyoto-u.ac.jp

1. はじめに

 MgB_2 は、金属系超伝導体中で最高の臨界温度($T_c=39$ K)を有する。 MgB_2 には、組成制御が比較的容易であること、構成元素のMgとBがいずれも資源的に豊富であること、軽いこと(低比重)等の特長があり、液体水素や冷凍機を利用した 20 K 近傍での実用化が期待されている。我々は電子ビーム(EB)蒸着法で Al テープ上に作製した MgB_2 薄膜の 4.2 K、10 T における臨界電流密度(J_c)が 1 MA/cm² を上回ることを報告した[1]。この高い J_c は超高真空中・低温での薄膜作製により MgO 相の少ない結晶粒界や数十 10 mm 径の柱状組織(粒界ピン)をもつ 10 軸配向 10 mm 10 mm

2. 実験方法

 MgB_2 薄膜の作製を EB 蒸着法により行った。Mg および B 原料にそれぞれ電子ビームを照射し、 280° C に加熱した Si 単結晶基板上に 300 s 蒸着した。なお、原料には Mg 鋳造塊と結晶性 B を用いた。Ti の導入にはアークプラズマガン(APG)を用い、APG の照射を MgB_2 の成膜中に行った。Ti 導入量は APG の照射回数($0\sim60$ 回)で制御した。また、別の Ti 導入法として、 MgB_2 と Ti の成膜を交互に 3 回繰り返した MgB_2 / Ti 多層膜(Ti-layer 試料)の作製も行った。得られた試料について、超高真空中($<1\times10^{-7}$ Pa)のアニール(450° C×1 hおよび 550° C×50 h)を行った。生成相の同定には X 線回折(XRD)測定法を、化学組成の決定には誘導結合プラズマ(ICP)発光分光分析を用いた。また、 T_c 、 T_c については四端子法から決定した。

3. 結果と考察

XRD 測定からいずれの試料においても(001)、(002)ピークのみが観測され、Ti を導入しても MgB_2 が c 軸配向していることがわかった。また、 $Table\ 1$ に示すように、as-grown 試料での T_c を比較すると $pure\ MgB_2$ が最も高く、Ti 導入量の増加とともに T_c は低下した。これは MgB_2 結晶中への Ti の固溶によると考えられる。 T ニール後の T_c に着目すると、いずれの試料についても T_c は上昇した。低温成膜に由来する低い結晶性が改善されたためであると推測される。 Ti 以下の磁場領域では Ti 以下の磁場領域では Ti 以下の磁場では Ti 以下的、Ti 以下的、T

一方で、Ti-layer 試料の結果に着目すると、as-grown 試料の T_c は pure MgB_2 試料のそれと同程度であることから、 MgB_2 層内部に Ti は固溶していないと考えられる。 Ti-layer 試料の T_c もアニールにより上昇したが、 pure MgB_2 には及ばなかった。 また、 Ti-layer 試料の T_c の低下が他の試料と比較すると緩やかになり、 高磁場中で pure T_c pure T_c を上回ったことから、 層状に導入した T_c が磁束ピンニング力を増大させると考えられる。

Table 1 Characteristics of the as-grown and annealed Ti-doped MgB₂ thin films.

	sample	# of APG shots	B/Mg	<i>x</i> in Mg _{1-x} Ti _x B ₂ (analyzed)	thickness - [nm]	<i>T</i> _c (K)		
						as- grown	annealed (450°C,1 h)	annealed (550°C,50h)
trial A	pure	0	2.2	-	204	33.7	-	36.3
	A-20	20	2.1	-	225	32.5	33.7	-
	A-30	30	1.8	-	174	29.1	30.8	-
	A-40	40	2.3	-	220	29.2	-	30.9
	Ti-layer	-	2.3	-	193	33.6		35.0
trial B	B-20	20	2.1	0.014	256	32.1	-	34.1
	B-40	40	2.3	0.020	238	31.8	-	33.1
	B-60	60	2.5	0.022	225	25.6	-	28.7

参考文献: [1]吉原ら, 低温工学 47, 103 (2012).