(t-C₄H₉)₂S₂ を用いた MoS₂ 薄膜作製および S/Mo 比の硫化条件依存

Fabrication of MoS₂ thin film using (t-C₄H₉)₂S₂ and sulfurization condition dependence on S/Mo ratio

[○]石原 聖也 ^{1,4},日比野 祐介 ¹,澤本 直美 ¹,大橋 匠 ²,松浦 賢太郎 ², 町田 英明 ³,石川 真人 ³,須藤 弘 ³,若林 整 ²,小椋 厚志 ¹ 明治大 ¹,東工大 ²,気相成長(株) ³,学振特別研究員 ⁴

°S. Ishihara^{1,4}, Y. Hibino¹, N. Sawamoto¹, T. Ohashi², K. Matsuura²,

H. Machida³, M. Ishikawa³, H. Sudoh³, H. Wakabayashi², and A. Ogura¹

Meiji Univ.¹, Tokyo Tech², Gas-phase Growth Ltd.³, JSPS Research Fellow⁴

 $E\text{-mail: }s_ishihara@meiji.ac.jp$

背景: 遷移金属ダイカルコゲナイドの一種であ る MoS2はディスプレイ用途として優れた特性 を有し、大面積・低温・低不純物成膜手法での MoS2 薄膜作製は次世代 LCD 実現に貢献する と期待される。これまでに我々は、高温スパッ タ MoS₂ 薄膜に対し有機硫黄原料(t-C₄H₉)₂S₂ を 用いた硫化アニールを施すことで膜中硫黄欠 損を補填し、S/Mo 比改善により薄膜の電気特 性が向上することを示してきた[1]。図1に (t-C₄H₉)₂S₂、および一般的な硫黄原料である S 粉末、H₂S の蒸気圧曲線を示す[2]。(t-C₄H₉)₂S₂ は S 粉末と比較し低温でも高い蒸気圧を有す るため生産性に優れ、また H2S と比較し毒性 や爆発性などの危険性がない。本研究では、 (t-C₄H₉)₂S₂の硫化反応速度の温度依存、雰囲気 依存について調査したため報告する。

実験: MoS_2 薄膜は電子ビーム蒸着金属 Mo 薄膜を(t- C_4H_9) $_2S_2$ で硫化することで作製した。硫化温度は 200-440°C、雰囲気は N_2 、 H_2 と変化させ、各条件につき膜中の S/Mo 比を XPS により算出することで硫化反応速度を比較した。また密度汎関数理論(DFT)により生成エンタルピー変化を求めることで(t- C_4H_9) $_2S_2$ の分解過程を調査した。基底関数は B3LYP/3-21G、計算プログラムは PC GAMESS/Firefly[3, 4]を用いた。

結果:硫化温度上昇に従い S/Mo 比が増加し、 N_2 雰囲気中では 440° C で S/Mo=2.0 となることが確認された。また H_2 雰囲気中では低温でも反応が進行し、 400° C で S/Mo=2.0 となることが確認された。DFT により、 H_2 雰囲気中で生成エンタルピー変化が最小となり、 $(t-C_4H_9)_2S_2$ の分解が促進されることが確認された。

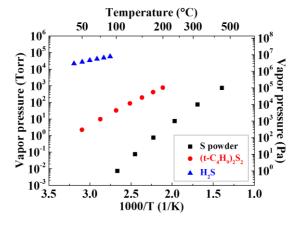


Fig. 1 Temperature dependent vapor pressures of $(t-C_4H_9)_2S_2$, S powder, and H_2S .

参考文献:

[1] S. Ishihara, *et al.*, Jpn. J. Appl. Phys. **55**, 04EJ07 (2015). [2] R. Hultgren, *et al.*, Metals Park, American Society for Metals, Ohio 1973. [3] A. A. Granovsky, Firefly version 8. [4] M. W. Schmidt, *et al.*, J. Comput. Chem. **14**, 1347-1363 (1993).