

Carrier transport properties of MoS₂ field-effect transistors produced by multi-step chemical vapor deposition method

National Institute for Materials Science¹, Kyushu University²

O(DC)Sinae Heo^{1,2}, Ryoma Hayakawa¹, Yutaka Wakayama^{1, 2}

E-mail: HEO.Sinae@nims.go.jp

A main purpose of this study is to explore carrier transport properties of field-effect transistors (FET), which are formed by an original multi-step CVD method. This process is consisted of four steps: MoO_3 thermal evaporation, annealing, sulfurization and post-annealing. This method enables us to grow patterned MoS_2 thin films simply by using shadow masks in MoO_3 thermal evaporation step. Here, we observed a wide range of electronic properties (ambipolar and n-type) by changing post-annealing temperature (T_{PA}). Importantly, high T_{PA} of 1000 °C yielded a high electron mobility of 13.1 cm²/V·s.

Figure 1(a) indicates the drain current-gate voltage (I_d - V_g) transfer characteristics at a fixed drain voltage (V_d) of 5 V. The FET, formed at T_{PA} = 600 °C, has a top contact-top gate configuration. The inset shows an optical microscope image of the FET. In general, the MoS₂ transistors have an n-type property. However, the transistor exhibited ambipolar operation; both electron and hole transports were observed in response to the gate bias voltages. This ambipolar operation was observed in transistors below T_{PA} = 1000 °C. Meanwhile, the transistor operation transited from ambipolar to n-type transport at a T_{PA} of 1000 °C as shown in Figure 1(b). The inset in Fig. 1(b) presents the corresponding well-modulated drain current by gate voltage. To get insight into the detailed mechanism, we examined the compositions of thin films using X-ray photoelectron spectroscopy (XPS). The S/Mo ratios depending on T_{PA} are plotted in Figure 1(c). There were large amounts of excess sulfur (ca. 20 %) up to 800 °C. Although the T_{PA} at 900 °C caused a large decrease in the S/Mo ratio, a T_{PA} of 1000 °C was needed to produce stoichiometric MoS₂ film. These results demonstrate that excess sulfurs are responsible for the ambipolar operation by acting as acceptors that generate holes. Moreover, high T_{PA} of 1000 °C had another distinct effect, i.e., it improved the crystallinity of the MoS₂ films. The electron mobility consequently reached 13.1 cm²/V·s.

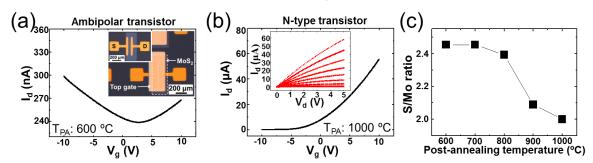


Figure 1. Transfer characteristics of the MoS_2 FET produced at T_{PA} of (a) 600 °C and (b) 1000 °C. The inset in (a) shows optical microscope image (top view) of the transistor. The inset in (b) indicates the output characteristics. (c) Compositional ratios (S/Mo) depending on the T_{PA} .