Fully-Printed Organic Thin-Film Transistors with 1-micron resolution

NIMS¹, Sun Yat-sen Univ.², Colloidal Ink³, Tokyo Univ.⁴, "Xuying Liu¹, Chuan Liu², Masayuki Kanehara³, Kenji Sakamoto¹, Takeshi Yasuda¹, Jun Takeya⁴, Takeo Minari¹ E-mail: LIU.Xuying@nims.go.jp

Shrinking device dimensions to the few-micron scale is the primary step in manufacturing high-resolution electronics. Particularly in the field of high-definition liquid crystal displays, thin-film transistors with channel lengths of no more than 5 μ m are typically required. Fully printing of organic thin-film transistors (OTFTs) currently becomes considerably interesting.^[1, 2]

We developed a high-resolution printing technique based on parallel vacuum ultraviolet (PVUV) patterning that can produce high-contrast wettability regions on flexible substrates. We used this technique to selectively deposit a functional ink with a 1- μ m feature size, thereby allowing the large-scale fabrication of OTFTs with channels as short as 1 μ m under ambient atmosphere, as shown in Figure 1. Moreover, in short-channel devices, hole injection barriers can be tuned through printing the optimum gate overlaps associated with selectively doping semiconductor/ electrode interfaces, resulting in a marked reduction in contact resistance from 20 to 1.5 k Ω cm, and an elevation of charge carrier mobility to a record high of 0.3 cm² V⁻¹ s⁻¹ in a 1- μ m-channel device.^[3] The results indicate that this technique is promising for the fabrication of large-area, high-resolution, low-cost electronics.

Figure 1 Fabrication process of fully-printed flexible OTFT devices

- [1] T. Minari, C. Liu, M. Kano, K. Tsukagoshi, Adv. Mater. 2012, 24, 299-306.
- [2] T. Minari, Y. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, A. Yaguchi, A. Tsukada, K. Kashizaki, M. Kanehara, Adv. Func. Mater. 2014, 24, 4886-4892.
- [3] X. Liu, M. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, J. Takeya, and T. Minari, Adv. Mater. 2016, DOI: 10.1002/adma.201506151.