Preparation and optically pumped lasing of single-crystal CH$_3$NH$_3$PbCl$_x$Br$_y$I$_z$ perovskites

NAIST1, ESPRIT AIST2, Van-Cao Nguyen1, Hiroyuki Katsuki1, Fumio Sasaki2, Hisao Yanagi1

E-mail: nguyen.van_cao.nnm5@ms.naist.jp

In this study, we investigate emission properties of CH$_3$NH$_3$PbCl$_x$Br$_y$I$_z$ ($x+y+z = 3$) fabricated by cast-capping method. Back to previous studies from other researchers, there are 2 ways to synthesized crystal perovskites thin films1: solution process based on spin coating and thermal vapor deposition. Because of some drawback maintained in both methods, recently we successfully fabricated large-sized single-domain CH$_3$NH$_3$PbBr$_3$ crystals and observed edge-emitting Fabry-Pérot lasing with very low threshold, and high Q factor2. Furthermore, vertical-cavity surface-emitting lasing was also observed in the CH$_3$NH$_3$PbBr$_3$ crystal sandwiched between DBR mirrors. On the other side, Xing et al. showed wide wavelength tunability in amplified spontaneous emission wavelengths at room temperature using perovskite films prepared by spin coating method3. Shi et al. showed low trap density and long carrier diffusion in single-crystal perovskites4. Another study, Kim et al. indicated that the quality of planar perovskite layers (homogeneous, flat surface and a pinhole-free perovskite layer) was important for optical devices performance5. From these points of view, here we adopt the cast-capping method to prepare single-crystals of CH$_3$NH$_3$PbCl$_x$Br$_y$I$_z$ by mixing different halide perovskites in the precursor solution. Figure 1 shows fluorescence micrographs of CH$_3$NH$_3$PbBrI$_2$ and CH$_3$NH$_3$PbClBr$_2$ indicating different emission colors. In the presentation, their optically pumped lasing performances are compared with that of CH$_3$NH$_3$PbBr$_3$ crystal.

References