光偏向器応用に向けた Si フォトニック結晶導波路構造の探索

Investigation of Si Photonic Crystal Waveguide Structures for Optical Beam Steering 横国大院工 ⁰竹内萌江, 竹内梧朗, 馬場俊彦 Yokohama Nat'l Univ., [°]Moe Takeuchi, Goro Takeuchi and Toshihiko Baba

E-mail: takeuchi-moe-gj@ynu.jp

我々は Si 格子シフト型フォトニック結晶導波路 (LSPCW) を研究し、広帯域・低分散スローライトを 実証してきた¹⁾. スローライトは波長や屈折率の変化に対して導波モードの波数 k を大きく変化させるの で、何らかの光放射機構と組み合わせると、放射角θが鋭敏に変化する光偏向器になる²⁾. 今回, Si LSPCW を用いてそのような光放射器を構成することを検討した. 特に 2 倍周期構造を用いて光を放射させるこ とを想定し、その放射量を計算、最適な構造を探索したので報告する.

図1に3列目シフト型シリカクラッド Si LSPCW を用いたデバイスの概要を示す. 円孔直径を繰り返し 増減させる Δr を導入している. 文献 1)と同様の LSPCW のパラメータで計算した導波モードのフォトニ ックバンドを図 2(a)に示す. Δr を変化させてもバンドはほとんど変化しない. 図 2(b)には群屈折率 n_g ス ペクトルを示す. ここでも Δr に関わらず, $n_g \sim 20$ の広帯域・低分散スローライトが生じるが, バンド端 近くでは n_g が 60以上まで増大する. 図2(c)と(d)にはそれぞれ波長 λ に対する放射角 θ と放射損失 α を示す. θ はバンドを反映するので, ここでも Δr 依存性は小さい. スローライト効果とシリカクラッド/空気境界 面での屈折により, 波長変化 $\Delta \lambda$ = 27 nm に対して30°近い光偏向角 $\Delta \theta$ が得られる. より n_g が大きな 2 列目 シフト型 LSPCW を使えば, さらに増大が期待できる. 一方, α は Δr が大きいほど増加する. したがって, Δr を適切に設定すれば, 光放射量が制御された拡がりが小さな光ビームが形成可能である.

参考文献 1) T. Tamura, et al., J. Lightwave Technol., 33, 7 (2015). 2) X. Gu, et al., IEEE Photonics J., 4, 5 (2012).

図 1 3 列目シフト型シリカクラッド Si LSPCW を用いたデバイスの概要.

図2 理論特性. (a) フォトニックバンド. グレー部分は $\Delta r = 0$ でも放射が生じるライトコーン. (b) 群屈折率 $n_g スペクトル$. (c) 波長 λ に対する放射角 θ . 面垂直方向 (z方向)を $\theta = 0^\circ$ としてい る. (d) λ に対する放射損失 α .