電子ビーム蒸着 MgB2 薄膜における結晶粒界の磁束ピンニング特性

Flux pinning properties of grain boundaries in electron-beam deposited MgB₂ films

京大院エネ科¹, 日立², 電中研³

^O下田 佑太郎¹, 高畑 仁志¹, 堀井 滋¹, 土井 俊哉¹, 楠 敏明², 一瀬 中³

Kyoto Univ.¹, Hitachi Ltd.², CRIEPI³

^oY. Shimoda¹, H. Takahata¹, S. Horii¹, T. Doi¹, T. Kusunoki², A. Ichinose³

E-mail: shimoda.yutaro.66e@st.kyoto-u.ac.jp

1. はじめに

MgB₂は、金属系超伝導体中で最高の臨界温度 (T_c=39 K) を有することから、液体水素や冷凍機を利 用した 20 K 近傍での実用化が期待されている。我々は 電子ビーム(EB)蒸着法で Al テープ上に作製した MgB2薄膜が、4.2 K、10 T で極めて高い臨界電流密度 $(J_c > 1 \text{ MA/cm}^2)$ を示すことを報告した[1]。この高い J_c は超高真空中・低温での薄膜作製によりMgO相の少な い結晶粒界や数十 nm 径の柱状組織(粒界ピン)をもつ c 軸配向 MgB2 薄膜が得られたことによる。しかし、応用 が期待される20Kでの磁場中J。がまだ十分ではない。 MgB2薄膜の磁場中Jc向上を目的に、我々は柱状組織 の結晶粒径の制御を通じて高い粒界密度の実現を進 めている。本研究では、薄膜の膜厚を粒径の制御因子 として着目し、膜厚の異なる MgB₂ 薄膜および MgB₂/Ni 多層膜を作製し、これらの超伝導特性および微細組織 を明らかにした。

2. 実験方法

 MgB_2 薄膜の作製を EB 蒸着法により行った。Mg お よび B 原料にそれぞれ電子ビームを照射し、280°C に 加熱した Si 単結晶基板上に蒸着した。原料には Mg 鋳 造塊と結晶性 B を用いた。今回は、膜厚(t)の異なる MgB₂ 薄膜と、Ni と MgB₂ とを交互に成膜した 3 層の MgB₂/Ni 層からなる MgB₂/Ni 多層膜(Ni-layer)を作製し た。膜厚は蒸着時間で制御し、膜厚 60 nm、240 nm の MgB₂薄膜と 250 nm の MgB₂/Ni 多層膜を得た。全ての 試料について、超高真空中(< 1×10⁻⁷ Pa)のアニール (温度:550°C、時間: 100 h)を行った[2]。

全ての試料について X 線回折(XRD)測定法により生成相の同定を行い、化学組成を誘導結合プラズマ(ICP)発光分光分析から決定した。なおこれらの MgB2 薄膜の組成は Mg:B=1:1.9~2.2 であった。また、T_c、J_c については四端子法から決定し、微細組織および膜厚の決定については透過型電子顕微鏡(TEM)を用いた。

結果および考察

膜厚 60、240 nm の MgB₂薄膜および MgB₂/Ni 多層 膜の 550℃×100 h のアニール後の T_c はそれぞれ 32.4 K、36.7 K、34.1 K であった。Fig. 1 にこれらの試料の 20 K における J_c の磁場依存性を示す。膜厚の異なる 2 つ の MgB₂薄膜の J_c を比較すると、膜厚の増加に伴い J_c が上昇した。しかし、磁場に対する 60 nm 厚薄膜の J_c の 低下は 240 nm 厚薄膜のそれよりも緩やかとなった。Nilayer MgB₂薄膜と比較すると、その J_c -H 特性が 60 nm 厚薄膜の特性と同様の傾向を示した。

Fig. 2(a)(b)にそれぞれ 240 nm 厚薄膜と MgB₂/Ni 多 層膜の断面 TEM 像を示す。Fig. 2 (b)より MgB₂/Ni 多 層膜の一層の厚さは 65~80 nm であり、60 nm 厚薄膜と 近い値であった。また、断面 TEM 像から 240 nm 厚薄 膜の 60 nm 近傍と最表面および Ni-layer MgB₂薄膜の 最表面の平均粒径はそれぞれ 19 nm、32 nm、27 nm で あり、Ni 層の導入で膜厚増加に伴う粒径(柱状結晶の 直径)の上昇が抑制されたことがわかる。つまり、磁場に 対する J_c 低下率の抑制効果は、粒成長が抑制され、粒 界密度が増加したことによると考えられる。

当日は、J。の磁場印加角度依存性の測定結果と併せて、磁束ピンニング特性について議論する。

Fig. 1 $\mu_0 H$ dependence of J_c at 20 K for MgB₂ (t = 60, 240 nm) and MgB₂/Ni thin films.

Fig. 2 Cross-sectional TEM images MgB₂ thin films. (a)MgB₂ (t = 240 nm) and (b) MgB₂/Ni (t = 250 nm)

参考文献

[1]吉原ら, 低温工学 47, 103 (2012).

[2] 堀井ら, H28 春季低温工学・超電導学会 (1B-p08)