屈折率 n の細円柱による光散乱の波跡 Wave trajectory of light scattering by a fine cylinder of a refractive index n [○]西山善郎¹、但馬文昭¹(1. 横国大教) [○]Yoshio Nishiyama¹, Fumiaki Tajima¹ (1. Yokohama Nat'l Univ. Ed.) E-mail: nishiyama-yoshio-yj@ynu.ac.jp

屈折率 *n* の細円柱による光散乱の波跡(類似光線)と散乱強度と繋がりを図示する。入射光は円柱 $(r \le r_D)$ 軸 $[\hat{z} = (0,0,1)]$ に平行な偏光平面波で円柱軸 に な方向: $\hat{k} = (1,0,0)$ に進入する、 $E^{\text{inc}} = (0,0, E^{\text{inc}}(r,\phi,z)) = (0,0, e^{ikr\cos\phi})$, for $r > r_D$. 円柱表面での電磁波の境界条件を使って円柱内外の電波は入射平面波 E^{inc} 、散乱透過波 E^{sctt} と円柱内往来波 E^{innr} に纏められ次のようになる。

$$E^{sctt} = \sum_{m=0}^{\infty} (2 - \delta_{m0}) i^m \alpha_m H_m^{(1)}(kr) \cos m\phi \ r \ge r_D, \ E^{innr} = \sum_{m=0}^{\infty} (2 - \delta_{m0}) i^m \beta_m J_m(nkr) \cos m\phi \ r \le r_D$$

係数 α_m, β_m は文献 [1]。これらの波動を分解し組み立てることにより見たことがあるようで何処か 異なる図がえられる。例として屈折率 n = 1.333 半径が波長の 80 倍 $r_D = 80 \times \lambda$ (wavelength)の円 柱型の水滴による主虹と副虹に相当するあたりの波跡と後方光散乱強度分布を図示した。[2]

Fig. 1: main lobe trajectories showing angle of incidence of rainbow

図1,2を見ると波跡は殆ど直線で光線と似 ていることが分かる。図3には極大迎角を示 した。主副虹辺りの波跡の水柱内透過時間は $\lambda = 0.66 \mu m$ とすると0.36ps,0.51psとなる。 通常の光線とは異なる特徴は半径が波長より 小さくても波跡は描けること。その例、描き 方、合理性を検討する。

[1]Tajima,F. etal., Opt. Rev. 15 75 2008.[2]Nishiyama,Y., J.O.S.A.A. 12 1390 1995.

Fig. 2: same as Fig. 1 for sub lobe

