第一原理計算を用いた Si 中のドーパント近傍の金属原子の 拡散経路とエネルギー障壁に関する研究 Study on diffusion path and energy barrier of metal atoms near dopant atom in Si by first-principles calculation 岡山県大院情報系工,[°]山田 惇弘, 末岡 浩治 Okayama Prefectural University, [°]Atsuhiro Yamada and Koji Sueoka E-mail: atsuhiro.0109@gmail.com

1.研究背景と目的

近年,LSIの微細化・高性能化が進行している.それ に伴って,様々な金属が用いられるようになっている. しかし,意図しない場所に混入した金属は,LSIの性 能を劣化させる.このようにLSIに使用する目的とは 異なる理由で混入した金属を金属不純物とよぶ.産業 界では,このような金属汚染はある程度起こりうるも のと考え,これらをLSI製造領域から取り除く"不純 物ゲッタリング"が実用されている.この技術では, ドーパントや酸素析出物,ウェーハ裏面のダメージ層 などをゲッタリングサイトとして用いる.ドーパント としては,一般的にアクセプターであるBがゲッタリ ングサイト(以下 Gs)として用いられている.

不純物金属が Gs にゲッタリングされる際に, 2 つの メカニズムが考えられる.1 つ目は,金属原子がゲッ タリングされるスペース.2 つ目は,Gs の電気的特性 である.前者は,Si と Gs の原子半径の違いによる局 所的な歪みに起因する.本研究では,BとPをGs と し,第一原理計算により不純物金属との結合エネルギ ーと拡散障壁を計算した.また,各サイトにおける金 属原子の存在確率を求める試みも行った.

2.計算方法

図1に示す 64 原子からなる Si 単結晶モデルを用いた. このモデルにおいて,置換位置と図2に示す3ヶ所の格子間位置(T, H, Bサイト)に5種類の金属や Csを配置し,結合エネルギーを求めた. さらに, 64 原 子モデル中の不純物金属について図3に示す T→H→Tサイトの拡散経路を調べ,拡散障壁を求めた.

なお、ドーパントや金属について現実に近い濃度を モデル化するため、計算モデルの周囲は広大な範囲で 完全な Si 結晶が存在していると考え、モデル側面内の Si 原子、セル長さとセル角度を固定した.また、3 次 元周期境界条件を課した.計算ソフトは CASTEP を使 用し、汎関数は GGA-PBE を用いた.カットオフエネ ルギーは 340 eV である.

Fig. 3 Diffusion path of impurity metal

3.計算結果と考察

64原子モデル中に4つの拡散経路が存在することが 分かった. GsとしてBを考え,その近傍におけるFeの 形成エネルギーと拡散障壁の計算結果を図4に示す.4 本の線は4つの拡散経路を示している.左端のプロット は,FeがBの第1近接に位置する時の形成エネルギーを 示している.FeはBにトラップされる実験事実から,こ の左端の形成エネルギーをゲッタリング効果の指標と した.また,この結果から比較的入ることは容易だが, 出ることは困難なサイトが存在することが分かる.

次に、図5にB近傍の各Tサイトにおける形成エネル ギーと等価な配置数から算出した存在確率を示す.こ れより、Feは必ずしもBの第一近接ではなく、それ以外 のサイトにもある程度の存在確率を持つことがわかる.

当日は,他のドーパントや不純物金属の計算結果を 整理して解析した結果も発表する.

4.まとめ

本研究では,LSIで用いられる5種類の金属について, ゲッタリングサイトとの結合エネルギーと拡散障壁を 第一原理計算により評価することで,ゲッタリングの メカニズムの解明を目的とした.主要な結果は以下の 通りである.

(1) 64原子モデル中に4つの拡散経路が存在し、それぞれの拡散障壁は互いに異なっている.

(2)ドーパントの周囲には複数のトラップサイトが存 在する場合がある.たとえばFeは必ずしもBの第一近 接ではなく、それ以外のサイトにもある程度の存在確 率を持つ

Fig. 4 Formation energy and diffusion barrier of Fe atom near B atom.

Fig. 5 Probability of configuration of Fe atom near B atom.