Fabrication of Ferrite Cantilevers using a Dual Beam FIB/SEM

ERATO-SQR project¹, 東北大 A1MIR², 原研³, 東北大金研⁴, 東北大院工⁵,
(1) 須 谷駿1,2, 針井一哉1,3, 高橋 進1,3, 中堂 博之1,3, 大橋 治一4, 邱 志勇2, 小野 樂人5,
塩見雄毅1, 4, 齊藤英治1,2,3,4

*(P) Yong-Jun Seo1,2, Kazuya Harii1,3, (P) Ryo Takahashi1,3, Hiroyuki Chudo1,3, (M2) Koichi Oyanagi4,
Zhiyong Qiu2, Takahito Ono5, Yuki Shiomi1,4, and Eiji Saitoh1,2,3,4
E-mail: seo@imr.tohoku.ac.jp

Cantilevers can be used as powerful sensors for a variety of measurements such as electron spin resonance detection [1], force microscopy, and cantilever based magnetometry [2]. Focused ion beam (FIB) milling is a popular technique for rapid and maskless nanofabrication. In this study, we have fabricated an yttrium iron garnet (YIG) cantilever with a Pt mirror deposited by using the FIB method and demonstrated efficient control of resonant frequencies by external magnetic fields. Figure 1 shows the fabrication process of the YIG cantilever. The starting material is a YIG film with 3 μm thickness grown on a gadolinium gallium garnet (GGG) substrate. The cantilever structure was patterned by the FIB milling (Fig. 1). The base of the cantilever was made by milling at the 52 degree angle to the wafer. The fabricated cantilever was then lifted out of the YIG film and welded on a Si wafer using an in situ lift-out technique of the FIB system. A SEM image of a successfully fabricated YIG cantilever (width: 800 nm, thickness: 600 nm, and length: 80 μm) on a Si wafer is shown in Fig. 2. The resonant frequency of the YIG cantilever was measured with a laser Doppler vibrometer in vacuum. In zero magnetic field, the measured resonant frequencies of the YIG cantilever are 54.960 kHz and 68.531 kHz with the quality factor value of 1200, as shown in Fig. 3. Two frequencies were identified as the horizontal and vertical vibrational modes, respectively. As the external magnetic field increases from 0 to 1100 G, the resonant frequencies are shifted. The maximal magnitude of the shift is 3.61 kHz, which is as large as several percent of the resonant frequency. The efficient control of the resonant frequencies with external magnetic fields indicates that ferrite cantilevers provide new functionality in cantilever technology.