Improvement of RF performance by using double δ -doping in InP-based

high-electron-mobility transistors with MOVPE-grown InAs/In_{0.8}Ga_{0.2}As quantum-well

日本電信電話株式会社 NTT 先端集積デバイス研究所

^Oエルムタワキル アミン, 星 拓也, 杉山 弘樹, 松崎 秀昭

NTT Device Technology Laboratories, [°]Amine El Moutaouakil, Takuya Hoshi, Hiroki Sugiyama,

Hideaki Matsuzaki

E-mail: elmoutaouakil.amine@lab.ntt.co.jp

[Introduction] InP-based high-electron-mobility transistors (HEMTs) with InAs quantum-well are known for their record high-speed performances, mainly due to their high electron mobility and saturation velocity [1-2]. Along with scaling, double δ -doping in HEMTs is used to boost the speed. operation However, there are no quantitative reports comparing structures with both single- and double-doping layers. In this work, we report on the performance of the double-δ-doped (DD) HEMT in comparison to the single- δ -doped (SD) HEMT.

Device Structure & Results Our MOVPE-grown HEMT structure is based on a 6-nm-thick InAs/In_{0.8}Ga_{0.2}As quantum well in the channel. The SD structure [3] has a single Si δ -doping placed above the channel with a doping density (N_s) of 3.2×10^{12} cm⁻². The DD structure has δ -doping layers placed above and below the channel, with a bottom N_s in the buffer layer of 1.2×10^{12} cm⁻², and a top N_s in the barrier of 2.8×10^{12} cm⁻². The total doping density for DD structures $(4.0 \times 10^{12} \text{ cm}^{-2})$ was higher than the one for the SD structure, therefore, their measured room-temperature mobility (μ) (~13,600 cm²/V.s) was lower than that for the SD structure (14,800 $cm^2/V.s$). Using these high-speed quantum well structures, scaled-down HEMTs with gate lengths (L_G) between 33 and 310 nm were fabricated. A dry etching procedure was performed to obtain a 9-nm gate-channel distance for vertical scaling. At $V_D = 0.6$ V, the I-V characteristics of 33-nm-L_G HEMTs exhibited a high drain current density of 1.2 mA/µm compared to 0.93 mA/µm for SD HEMT. The increase in the current density can be attributed to the higher N_s in the DD structures. As for the drain conductance (g_D) , its value in DD HEMTs was 0.8 S/mm, compared with 1.0 S/mm in SD HEMTs. The DD structure improves g_D.

Figure 2 shows the current gain cut-off frequency (f_T) for DD and SD HEMTs. f_T shows a similar dependence on gate length for both structures, despite the differences in μ and N_s . The maximum-oscillation frequency (f_{MAX}) on the

other hand, was higher in the DD HEMTs than in the SD HEMTs, especially in the short gate-length region, as shown in Fig. 3.

[Summary] SD and DD HEMTs with a 6-nm-thick InAs/In_{0.8}Ga_{0.2}As quantum well were investigated. For DD HEMT, equivalent f_T values to those of SD HEMT were obtained even with lower μ , and f_{MAX} shows higher value than that of SD HEMT. These results can be explained in part by the low g_D in DD HEMTs.

This work was supported in part by the research and development program Multi-ten Gigabit Wireless Communications Technology at Sub-terahertz Frequencies of the Ministry of Internal Affairs and Communications, Japan.

X. Mei et al., IEEE Electron Device Letters (2015) 36-4.
E.-Y. Chang et al., Applied Physics Express (2013) 034001.
A. El Moutaouakil et al., JSAP meeting (Autmn 2015).

