Investigation of Mg Ion Implantation for Current Blocking in Vertical Ga₂O₃ Transistors National Institute of Information and Communications Technology¹, Tamura Corporation² [°]Man Hoi Wong¹, Kohei Sasaki^{2,1}, Akito Kuramata², Shigenobu Yamakoshi², Masataka Higashiwaki¹ E-mail: mhwong@nict.go.jp

Vertical *n*-channel Ga_2O_3 transistors require an electron current blocking layer (CBL) to prevent direct source-drain leakage. Mg-ion (Mg⁺⁺) implanted Ga_2O_3 was studied in this work as a CBL in light of semiinsulating Ga_2O_3 obtained by Mg compensation doping of *n*-type bulk crystals. Systematic thermal anneals and electrical measurements established the migration behavior of implanted Mg⁺⁺ in Ga_2O_3 and presented evidence of implant activation, based on which a pathway for forming Mg⁺⁺-implanted CBLs is proposed.

Test structures comprising *n*-Ga₂O₃(top channel)/Ga₂O₃:Mg(CBL)/*n*-Ga₂O₃ were fabricated by implanting Mg⁺⁺ into Sn-doped ($n = 2 \sim 4 \times 10^{18} \text{ cm}^{-3}$) β -Ga₂O₃ (001) substrates at 560 keV and a dose of $6 \times 10^{14} \text{ cm}^{-2}$ with a peak Mg concentration of $1.5 \times 10^{19} \text{ cm}^{-3}$ at 0.5–0.6 µm below the surface. Capless anneals were carried out between 600–1000°C at 100°C intervals for 30 min in N₂ to attempt Mg activation and implantation damage recovery. Patterned-top and blanket-bottom Ti/Au ohmic contacts were subsequently deposited. Current-voltage measurements were performed to assess vertical leakage through the Mg⁺⁺-implanted Ga₂O₃. Lateral conduction in the top channel served as an independent gauge of lattice recovery. An unannealed Mg⁺⁺-implanted control sample and an unimplanted reference sample were processed simultaneously.

Owing to extensive implantation damage, the unannealed control sample was effective in vertical current blocking (1 nA/cm² at 50 V) but also suffered a resistive top channel. Annealing at 600–800°C led to progressive damage recovery that caused higher vertical leakage (>1 mA/cm² at 45 V), while a modest 2-order improvement in lateral channel current density was observed. Implantation damage was largely reversed after annealing at 900°C as confirmed by transmission electron microscopy and x-ray diffraction, at which point the Mg⁺⁺-implanted Ga₂O₃ failed to block current and the channel conductivity rose steeply by 7–9 orders approaching that of the unimplanted reference sample (Figs. 1, 2). Interestingly, further lattice recovery at 1000°C not only restored current blocking but also rendered the top channel resistive (Figs. 1, 2). Such behavior could be explained by Mg diffusion toward the channel and activation as a compensating acceptor. Indeed, secondary ion mass spectroscopy (SIMS) revealed significant Mg redistribution beyond 900°C, transforming the ion profile from Gaussian into box-like with sharp decay into the bulk (Fig. 3). CBLs with well-defined depth and doping profiles are thus conceivable by controlling the implantation damage.

This work was partially supported by Council for Science, Technology and Innovation (CSTI), Crossministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO).

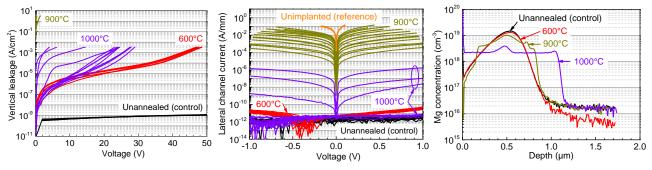


Fig. 1. Vertical leakage through Mg^{++} -implanted Ga_2O_3 before and after annealing (600/900/1000°C).

Fig. 2. Lateral conduction in top n-Ga₂O₃ channel before and after annealing (600/900/1000°C).

Fig. 3. SIMS profiles of Mg before and after annealing (600/900/1000°C). Mg diffusion transformed the as-implanted Gaussian profile into a box-like profile.