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Knowledge of the channel temperature (Tch) in high power Ga2O3 metal-oxide-semiconductor field effect 

transistors (MOSFETs) is essential for device reliability studies. In this work, the Tch and thermal resistance 

(Rth) of field-plated β-Ga2O3 (010) MOSFETs [1] were systematically determined through electrical 

measurements complemented by 2-D device simulations that incorporated experimental Ga2O3 thermal 

parameters. The technique was based on a comparison between DC and pulsed drain currents (IDS) at known 

applied drain biases (VDS), where negligible self-heating under pulsed conditions enabled approximation of Tch 

to the ambient temperature (Tamb) and consequently calibration of IDS as a function of Tch (≈ Tamb) over a range 

of VDS. Reduction in IDS from the calibrated values arises from DC operating conditions that induce significant 

self-heating. The reduced IDS at a given VDS uniquely determines a Tch = Tamb + ΔT (where ΔT is the 

temperature rise due to self-heating) from the IDS-Tch calibration data obtained from pulsed measurements. 

The measured and simulated temperature-dependent DC characteristics of the Ga2O3 MOSFET are shown 

in Fig. 1. A room temperature electron mobility of 75 cm2/Vs and a thermal resistance of 1°C·mm2/W at the 

channel/buffer interface were obtained by calibrating the device model against the DC data. Temperature-

dependent pulsed characteristics – measured at quiescent drain/gate biases of 0 V with a pulse width of 5 μs 

and a duty cycle of 0.005% – were then simulated by disabling self-heating in the calibrated DC model (Fig. 

2). A good match between measured and simulated values at low powers confirmed insignificant power 

dissipation, whereas compression of measured IDS toward higher powers was attributed to self-heating. The 

low power pulsed data unaffected by self-heating were translated into an IDS-Tch calibration plot, from which 

Tch as a function of DC dissipated power (PD = IDS×VDS) was extracted as described above. Reasonable 

agreement between the measured Tch (averaged along the channel) and the simulated peak Tch (under the gate) 

was obtained (Fig. 3). A large experimental Rth of 48°C·mm/W extracted at Tamb = 20°C highlights the 

importance of thermal analysis for understanding the degradation mechanisms of Ga2O3 devices. 
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Fig. 1.    Measured (symbol) and 
simulated (line) temperature-
dependent DC IDS-VDS characteristics.  
Good agreement lent support to a 
well-calibrated DC device model.  

Fig. 2.   Measured (symbol) and 
simulated (line) temperature-dependent 
pulsed IDS-VDS characteristics. Good 
agreement at low powers indicated 
negligible self-heating.  

Fig. 3.    Measured average Tch 
(symbol) and simulated peak Tch (line) 
vs. PD. The slope corresponds to Rth. 
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